Bagus Sapto Mulyatno
Universitas Lampung

Published : 12 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 12 Documents
Search

PRE STACK DEPTH MIGRATION UNTUK KOREKSI EFEK PULL UP DENGAN MENGGUNAKAN METODE HORIZON BASED DEPTH TOMOGRAPHY PADA LAPANGAN ‘A1 DAN A2’ Attikah Azzahra; Bagus Sapto Mulyatno; Bambang Mujihardi
Jurnal Geofisika Eksplorasi Vol 4, No 1 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i1.6

Abstract

In the case of seismic data processing with sandstone lithology such as shale and carbonate often get the result of data processing which have pull up effect especially on the time domain migration result. Pre stack depth migration is a processing based on focusing the amplitude according to the actual depth by using the input interval velocity. Migration is performed using kirchhoff pre stack depth migration algorithm. Pre stack depth migration is done with modeling of horizontal based depth tomography method. This method uses residual moveout correction applied along the horizon-picking line. This research uses two field data that is A1 and A2 Field. A1field has characteristics of carbonate rock that produce pull up shaped similar to carbonate layer. A2 field has a pull-up effect that is not very clear but has build up because of the layer above it. Stages performed starting from the processing of pre stack time migration in the form of velocity picking, generate rms velocity and migration time domain. The pre stack depth migration process begins with a velocity transformation with the dix transformation equation to generate interval velocity, migrate Pre stack depth migration, perform horizon interpretations and perform velocity modeling using the horizon based depth tomography method. The iteration is done 4 times and resulted in the final section of pre stack depth migration which has been corrected by pull up effect.
ANALISIS TINGKAT RESIKO DAMPAK GEMPABUMI DI KABUPATEN CILACAP MENGGUNAKAN METODE DSHA DAN DATA MIKROTREMOR Kukuh Dialosa; Rustadi Rustadi; Bagus Sapto Mulyatno; Cecep Sulaeman
Jurnal Geofisika Eksplorasi Vol 4, No 3 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i3.42

Abstract

Soil mechanical research has been done in Cilacap Regency using DSHA method and microtremor data. This study aims to analyze the local land response to earthquakes based on the dominant frequency parameters (f0), amplification factor (A0), wave velocity VS30 and seismic hazard analysis through deterministic approach. This research uses 193 microtremor measurement points using a short period TDS-303 type (3 component) seismometer. Microtremor data were analyzed using the Horizontal to Vertical Spectral Ratio (HVSR) method in geopsy software. DSHA analysis refers to the source of the Lembang Fault earthquake and Java Subduction zone for deterministic calculations. Based on the analysis of HVSR method, Cilacap Regency is located on land type 1 (frequency 0-1.33 Hz) and soil type 2 (frequency 1,33-5 Hz) according to Kanai Classification (1983), dominated amplification value 1,104 to 8,171 times, then Dominated by soil class E (VS30 value 183 m / s) and soil class D (183 m / s VS30 366 m / s) according to NEHRP Classification (2000). This indicates that Cilacap Regency has high vulnerability to earthquake disaster. Based on the estimated value of PGA calculation method of DSHA, from the calculation of earthquake source Subduction obtained Java PGA bedrock 0,045 g - 0,0671 g and PGA surface rock 0,1926 g - 0,4855 g and calculation of Lembang Fault obtained PGA bedrock 0, 09 g - 0.025 g and PGA surface rocks 0.017 g - 0.089 g. Based on risk map analysis (combination of dominant frequency analysis, amplification, susceptibility factor and ability factor), the highest risk areas are Kec. Adipala, Kasugihan, Binangun, Nusawungun, Cil. Middle, Cil. South, Cil. North, allegedly the soil layer constituent area is a layer of thick and soft sediments. While the low risk of Kec. Majenang and Dayeuh Luhur.
ANALISIS RESERVOAR MIGAS (SANDSTONE) MENGGUNAKAN MULTIATRIBUT SEISMIK PADA LAPANGAN TG12, CEKUNGAN BARITO, KALIMANTAN SELATAN Edo Pratama; Bagus Sapto Mulyatno; Ahmad Zaenudin
Jurnal Geofisika Eksplorasi Vol 5, No 1 (2019)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v5i1.19

Abstract

The study using multi attribute seismic has been done on TG12 field which situated at Lower Foreland Formation, Barito Basin dominated by sandstone on layer area of the target X. The objective of the study is to map the sandstone reservoir by predict distribution value of gamma ray log, neutron porosity, and density which goes through wells such as FM1, FM2, FM3, and FM4 on seismic data. Total attribute that is being used by step wise regression method by considering validation error. Multiattribute process only applied on FM2, FM3, and FM4 wells, whereas FM1 is used as a test well to determine the correlation value between seismic data and log data that is being used. In addition, from well test correlation showing great correlation result of neutron porosity log and density log both obtain the correlation around 0.6322 and 0.6557 while the gamma ray log obtain low correlation that is 0.1647 towards multi attribute result. The processing result of multi attribute obtained distribution of sandstone with gamma ray estimation range value of 65-75.8API, neutron porosity estimation range value 0.15-0.2262, while density estimation range value 2.4308-2.77gr/cc.
IDENTIFIKASI DAN ESTIMASI SUMBER DAYA BATUBARA MENGGUNAKAN METODE POLIGON BERDASARKAN INTEPRETASI DATA LOGGING PADA LAPANGAN ”ADA”, SUMATERA SELATAN Deddi Adrian; Bagus Sapto Mulyatno
Jurnal Geofisika Eksplorasi Vol 4, No 1 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i1.8

Abstract

As petroleum reserves depleted, certainly encourage the government to search for new energy sources. Eksploration of coal is the right choice because  its potential is so great in Indonesian especially in South Sumatera Province is known have content 37,80% from total resources in Indonesian. Well loggging method is one of geophysics method used to find and estimate coal resources. Advantages of well logging method is able to describe subsurface laterally. The purpose of this study is displaying an overview of subsurface rock layers, determine the direction of distribution by correlating coal seam between wells based on data logging, and to estimate coal resources in the research area. The total area of the author's research is 442.056 m2 has 10 wells. Log data used in this study is gamma ray log dan density log, where coal seams are characterized by gamma ray log response and low log density responses. On the field ”ADA” found four coal seam, that is seam A1 with thickness 8,28 m, seam A2 with thickness 13,62 m, seam B with thickness 18,50, and seam C with thickness 8,84. Direction of coal distribution from South to North with slope angle 5-30º and direction of sincerity from East to West. The author calculates the estimated coal resource using polygon method because this calculates method can be done with a short time and the results are right. Total coal by polygon method of 18.322.653 m3 in tons of 21.987.184–27.483.980 ton while calculations with software rock works 15 amount 18.786.254 m3 in tons of 22.543.505–28.179.381 ton.
IDENTIFIKASI BAWAH PERMUKAAN LAPANGAN MINYAK“HUF” SUMATERA SELATAN UNTUK MENDELINIASI STRUKTUR CEKUNGAN HIDROKARBON BERDASARKAN DATA GAYABERAT Ade Setiawan; Bagus Sapto Mulyatno
Jurnal Geofisika Eksplorasi Vol 4, No 1 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i1.4

Abstract

Oil field research in regional Banyuasin “HUF” , South Sumatra have been done by the gravity data with objective of knowing fault structure based on analysis of hydrocarbon SVD and knows hollow structure  based on the 3D model of the Bouguer Anomaly and Residual Anomaly. Study areas had Bouguer Anomaly between 13 mgal up to 33 mgal to the interval 1 mgal, where the value of Bouguer Anomaly high have a range value 26 mgal up to 33 mgal which is in the direction of west. While the low value of Bouguer Anomaly have a range value 13 mgal to 20 mgal that is in the east. To knew the existence of structure fault, filtering Second Vertical Derivative (SVD) on a Bouguer Anomaly, Regional and Residua mapl.Pattern of structure fault indicated the contours of a zero value and between the high and low contours. From the results of the analysis SVD Complete Bouguer Anomaly and SVD Residual Anomaly there were 4 (four) fault, while from SVD Regional Anomaly there are 3 (three) fault. 3D modeling the Residual Anomaly were conducted to prove the existence of the fault SVD analyzed based on the results of the analysis and to know the hydrocarbon basin. Based on the results of the inversion of 3D the Residual Anomaly, basin was found in the depth of 1500 m – 3000 m with a value of the density ranges from 2.24 gram/cc until 2.32 gram/cc which identified as sandstone basin.
ANALISIS SIFAT FISIS PADA RESERVOAR BATUPASIR MENGGUNAKAN METODE SEISMIK INVERSI IMPEDANSI AKUSTIK (AI) DAN MULTIATRIBUT PADA LAPANGAN “MNF” CEKUNGAN BONAPARTE Muhammad Niko Febridon; Bagus Sapto Mulyatno; Egie Wijaksono
Jurnal Geofisika Eksplorasi Vol 4, No 2 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i2.11

Abstract

Analysis of the physical properties of the sandstone reservoir in this study was carried out using the acoustic impedance inversion method and seismic multi-attribute which was carried out at the Bonaparte Basin "MNF" Field. In this study, the acoustic impedance distribution is generated, and the acoustic impedance is derived to obtain a water saturation distribution map and the volume of the log property is predicted to predict pseudo gamma ray, density and porosity with multi-attribute analysis using linear regression method with step wise regression technique. From the results of well data crossplot analysis for sand-shale sensitivity analysis and inversion analysis on sandstones filled with hydrocarbon fluid obtained the acoustic impedance value is between 12,000 ft / s * g / cc - 27,000 ft / s*g / cc. In the Middle part around the NN-1, NN-3 and NN4 wells and the Southeastern part of the research area are prospect areas that have gamma ray values with a range of 5-70 API, density with a range of 2.1-2.3 gr / cc and porosity with a range of 18-23% and SW of 10-13% indicating that the hydrocarbon gas accumulated in the research field. The results of the multi-attributes and acoustic impedance show that the sandstones in this field are thight sandstones.
INVERSI MIKROTREMOR UNTUK PROFILING KECEPATAN GELOMBANG GESER (Vs) DAN MIKOROZONASI KABUPATEN BANDUNG Andina Zuhaera; Suharno Suharno; Bagus Sapto Mulyatno
Jurnal Geofisika Eksplorasi Vol 5, No 2 (2019)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v5i2.25

Abstract

Bandung Regency is a highland area with a slope between 0 - 8%, 8-15% to above 45%. The district is located at an altitude of 768 m above sea level with the northern region higher than the south. The purpose of this study was to determine the distribution of Vs30 waves and determine the impact of damage due to wave amplification (amplification). To minimize the impact of this earthquake identification can be done including a survey to map soil characteristics in response to earthquake shocks using the seismic Horizontal to Vertical Spectral Ratio (HVSR) method. Based on the results of the study, the distribution of the dominant frequency values, Bandung Regency was identified as having hard and soft rock soil and having solid clay with a thickness of tens of meters. The amplification value in Bandung Regency has a value (0 Ao 6) which can be categorized that Bandung Regency has a small impact on the earthquake. The difference between the results of inversion processing and HVSR is due to the assumption that the layer inversion is heterogeneous and the HVSR layer is homogeneous.
KLASIFIKASI PETROFISIKA TIPE BATUAN UNTUK MEMPREDIKSI KUALITAS RESERVOAR PASIR SERPIHAN PADA FORMASI TALANG AKAR, CEKUNGAN ONWJ Feni Priyanka; Bagus Sapto Mulyatno; Riezal Ariffiandhany
Jurnal Geofisika Eksplorasi Vol 4, No 3 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i3.39

Abstract

Hydrocarbons were accumulated in reservoir, the reservoir has a lot of types depending on the geological conditions and the constituent mineral. In ONWJ basins, sub-basins Arjuna, Talang Akar Formation is sand splintersreservoir type. The presence of clay in a reservoir will reduce the resistivity and increase thesaturation, so it takes a multimineral analysis and the reservoir qualityclassification. In this study, physical properties (porosity, permeability, Rw, and saturation) and the quality of the reservoir can be identified through petrophysical analysis by utilizing log data and core analysis, and the rocktypeprediction(using R35 Winland or HFU method). In this study 5 wells (IX-A1, IX-13, IX-4, IX-7 and IX-8)used and found eight hydrocarbon zones, 6 are validated by the DST (drill steam test)data, androck type method that suitable is the method of HFU (hydraulic flow units) due to the coefficient of correlation between porosity and permeability shows a value of 0.75, based on the calculations, the eight types of rock is conclude, where the dominance of the rock typeis the type 12 with a pore size between 5-10 microns, type reservoir rocks in this study belong to the lithofacies distributary channel and mouthbar sand. By knowing the petrophysical property values, it can determine reservoir productivity and determine the zone eligible to be produced or not, by using curve SMLP (Stratigraphic Modified Lorenz Plot).
PERBANDINGAN NILAI PERCEPATAN TANAH MAKSIMUM BERDASARKAN MODIFIKASI KONSTANTA ATENUASI DAN DATA ACCELEROGRAPH TAHUN 2008-2016 PADA STASIUN BMKG LAMPUNG Pipit Melinda Meitawati; Bagus Sapto Mulyatno; Karyanto Karyanto; Agung Setiadi
Jurnal Geofisika Eksplorasi Vol 4, No 2 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i2.17

Abstract

Peak ground acceleration is one of the parameters used in estimating the extent of breakdown caused by earthquake shocks. In the present study, the determination of an attenuation empirical formula PGA (Peak Ground Acceleration) based on the attenuation equation Lin and Wu (2010). Data used in the study of seismic event data by period year 2008-2012. Through the calculation of regression analysis, then obtained the function attenuation of peak ground acceleration in Lampung region at each station accelerograph.At the LWLI accelerograph station obtained the value of the empirical coefficient of the distance of earthquake -2.351, the empirical coefficient of earthquake magnitude 0,574, and the constant 2,430. At the KASI accelerograph station obtained the value of the empirical coefficient of the distance of earthquake -2.522, the empirical coefficient of earthquake magnitude 0.654, and the constant 2.182. At the BLSI accelerograph station obtained the value of the empirical coefficient from the distance of earthquake -3.224, the empirical coefficient of earthquake magnitude 0.651, and constant 4,092. At the KLI accelerograph station obtained the value of the empirical coefficient from the distance of earthquake -2.746, the empirical coefficient of earthquake magnitude 0.751, and the constant 2.053.Result of correlation test verification, chart relation between distance and magnitude earthquakes, ratio PGA contour maps, as well as a ratio between the value of PGA models with the observation of accelerograph year 2013-2016 show that the acceleration attenuation function of the obtained soil is relatively good. Based on PGA attenuation contour map model at an event the earthquake on 28th May 2011, PGA great value be found in the Liwa region with a PGA score of 10-20 gal and its seismic intensity value is V-VI MMI. It happens because of the source the earthquake is in the western sea of Liwa.
ESTIMASI KANDUNGAN SERPIH (Vsh), POROSITAS EFEKTIF (∅e) DAN SATURASI AIR (Sw) UNTUK MENGHITUNG CADANGAN HIDROKARBON PADA RESERVOAR LIMESTONE LAPANGAN “PRB” DI SUMATERA SELATAN MENGGUNAKAN DATA LOG DAN PETROFISIKA Leo Rivandi Purba; Bagus Sapto Mulyatno
Jurnal Geofisika Eksplorasi Vol 4, No 3 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i3.43

Abstract

Log and petrophysics data of research area are that located in South Sumatera Basin, exactly at formation Baturaja will be used for counting the hydrocarbon stock in research field. There are 3 the well datas prosessed to determine the prospect layer of hydrocarbon and estimate the hydrocarbon stock in the productive zone by using 1 petrophysic data from well PRB-3. In order to determine the productive zone of hydrocarbon, the first thing to do is to determine the petrophysics parameters. Parameters used is shale content, effective porosity and water saturation. The value of shale content on “PRB” field shows that reservoir is clean from shale minerals. But, based on the saturation of water, type hydrocarbon in reservoir it is natural gas. Based value of three parameters last, the field “PRB” having 6 zone productive hydrocarbon in each ecploratory wells.  Then, determine zone net pay that had been determined by using the cut-off of shale content which is 8% it means hydrocarbon will be produced if the value of shale content under 8%, effective porosity is 5% it means hydrocarbon will be produced if the value of porosity of effective larger than 5% and water saturation is 70% it means that the value of water saturation on field “PRB” must be less than 70% that hydrocarbon can be produced. Average thickness of the net pay in well PRB-1 is 6.78 meter. In well PRB-2, the average thickness is 7.37 meter while in well PRB-3 it is 3,825 meter. The average thickness from those three wells is 3,005 meter. The mean effective porosity of those 3 wells is 8,1% and the mean water saturation is 27,2%. Gas volume formation factor (Bg) is 0,0226 bbl/SCF which the area width is 28 km2. Natural gas stock (OGIP) in this research area is 7,764 BSCF.