Noor Muhammad Indragiri
Pusat Survey Geologi, Bandung

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

INVERSI 2D DATA MAGNETOTELURIK UNTUK MENGETAHUI KEBERADAAN HIDROKARBON DAERAH BULA, MALUKU Elen Novia Limswipin; Syamsurijal Rasimeng; Karyanto Karyanto; Noor Muhammad Indragiri
Jurnal Geofisika Eksplorasi Vol 4, No 3 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i3.38

Abstract

There had been done a regional research which tittle is “2D inversion magnetotelluric data for understanding the hidrocarbon presence in Bula, Maluku”. This study aims to determine the resistivity distribution area of research based on data Magnetotelluric, identifying the presence of hydrocarbons based on the value of the resistivity of the results of 2D inversion of data Magnetotelluric. Methods of data processing done are (i) transform raw data from the time domain into the frequency domain, (ii) reduce noise by robust processing, (iii) process combine, (iv) Selection cross power, (v) inversion 1D and 2D. 2D inversion results is sectional subsurface resistivity distribution, layer having resistivity values 7-16 Ωm along MT1 and MT7 point at a depth of 1000 meters is a clay stone which is indicated as cap rock. Layer with resistivity values 34-120 Ωm, which is between the point MT6 and MT7 at a depth of 1500 meters is indicated as the sandstone reservoir. Based on geologic information and sectional 2D inversion seen their fault based on the resistivity contrast is between the point MT2 and MT3, MT3 and MT4 and MT6 and MT7.
IDENTIFIKASI CEKUNGAN HIDROKARBON “RAE” BERDASARKAN DATA MAGNETOTELURIK DI DAERAH BULA, MALUKU Gita Purna Rae Wanudya; Syamsurijal Rasimeng; Rustadi Rustadi; Noor Muhammad Indragiri
Jurnal Geofisika Eksplorasi Vol 4, No 3 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i3.40

Abstract

The research had been performed using Magnetotelluric to get a 2D model based on variations in resistivity of the subsurface rock. The purpose of this study was to determine the hydrocarbon formation zone. The research method to achieve the research objectives, among others, the first filtering performed on the data with a robust process. This process consists of Robust No Weight, Robust Rho Variance and Ordinary Cohenerency. The second step is done to change the format Selection XPR And Edi. A third inversion resistivity model for the review get a 2D cross section. Based on the findings of the eight data processing methods of measurement points obtained information Magnetotelluric rock formations. Formation hidrokrabon What are the areas is research a reservoir and caprock. The layer in 1600 m – 2700 m depth from the surface which resisvity 12 -33 m assumpted as clay cap. While the layer in 2700 m – 5000 m depth from the surface with high resistivity 41- 250 m is assumpted as oil sands (reservoir). The trap zone of this hidrocarbon formation categorized into structural trap which is the trap of anticline.
IDENTIFIKASI STRUKTUR BAWAH PERMUKAAN MENGGUNAKAN METODE MAGNETOTELLURIK 2D DI DAERAH CEKUNGAN BINTUNI SEBAGAI POTENSI HIDROKARBON Ririn Yulianti; Syamsurijal Rasimeng; Karyanto Karyanto; Hidayat Hidayat; Noor Muhammad Indragiri
Jurnal Geofisika Eksplorasi Vol 4, No 2 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i2.18

Abstract

Magnetotelluric research was done in hydrocarbon prospect area of Bintuni basin, West Papua province. The purpose of this research is to identificate hydrocarbon prospect in subsurface structure using 2D resistivity section. Data processing step for the research are; (i) Data transformation from time domain to frequency domain using Fourier transformation. (ii) Filtering process using Robust No Weight, Robust Rho Variance and Robust Ordinary Coherency. (iii) XPR selection and formatting data into EDI file. (iv) 2D resistivity section modeling using inversion. The result of this research based on 2D resistivity section in Klasafat formation have resistivity value about 1 – 20 Ωm. From 0 until 1000 meter below the surface the main lithology is claystone that identified as caprock. Kemblengan formation have resistivity value about 20 – 90 Ωm in 3500 meter under surface with main lithology lime-sandstone and identified as a reservoir. Tipuma formation have resistivity value about 0.62 – 2 Ωm in 8000 meter under surface with main lithology claystone. Kemun formation have resistivity value about 20 – 32 Ωm in 6000 meter under surface with main lithology sandstone and identified as a basement.