Mochamad Riza Iskandar
Research Center for Oceanography, Indonesian Institute of Sciences

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Turbulent Mixing Inferred from CTD Datasets in the Western Tropical Pacific Ocean Adi Purwandana; Mochamad Riza Iskandar
ILMU KELAUTAN: Indonesian Journal of Marine Sciences Vol 25, No 4 (2020): Ilmu Kelautan
Publisher : Marine Science Department Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ik.ijms.25.4.148-156

Abstract

The spatial pattern of energetic aspect related to vertical mixing processes of the water masses in the western tropical Pacific Ocean is characterized in this study. Turbulent kinetic energy dissipation rates and vertical eddy diffusivities in this region are estimated from archived CTD profiles from World Ocean Database (WOD). The dissipation rates are estimated using the improved Thorpe method which considered the canonical Garret-Munk background dissipation rate and the typical lowest value dissipation rate from microstructure measurements, 10-10 m2s-3. Enhanced dissipation rates of 10-8-10-7 m2s-3 were found in the region known as an active area where two Pacific water masses from different sources intersect and strong mesoscale circulations exist while lower dissipation of less than 10-8 m2s-3 was found in the less active regions. A comparison with recent 3D hydrostatic model of M2 internal tide shows less agreement dissipation rates of the model with the observations, with the decreasing trend of discrepancy towards deeper. This suggested that topography roughness, homogenous stratifications yet lacking of background circulations set in the model were not sufficient to reproduce dissipation in the region with strong background mesoscale circulations. It was indicated that the main contributor for vertical overturning events occurred in this region is due to strong shear instabilities enhanced by background circulations. A direct method estimates using vertical microstructure profiler is suggested to validate this indirect method in the future.
Observed features of the water masses in the Halmahera Sea in November 2016 Mochamad Riza Iskandar; Adi Purwandana; Dewi Surinati; Wang Zheng
ILMU KELAUTAN: Indonesian Journal of Marine Sciences Vol 26, No 4 (2021): Ilmu Kelautan
Publisher : Marine Science Department Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ik.ijms.26.4.225-236

Abstract

Halmahera Sea is one of the locations in the eastern route of Indonesian Throughflow (ITF), where high salinity water is mainly transported by the ITF. The description of water mass in the Halmahera Sea from the perspective of water mass, and related mixing is important. It is not only useful for understanding water mass features, but it can also be used to determine the strength of the turbulent mixing, and so allow how it relates to the water transformation. Here, we report the water mass properties and estimation of mixing quantities in the Halmahera Sea from the CTD profiles based on recent onboard observations during the IOCAS cruise in November 2016. The water mass analysis was done by examining the characteristics of water types in the Temperature-Salinity (T-S) diagram. The mixing estimation uses the density profile derived from temperature and salinity profiles and the quantification of vertical turbulence observed by density overturn. Halmahera Sea is to be found as the location where the thermocline salinity changes abruptly, it is shown from the erosion of salinity maximum in the density of 22-26σθ decreased from the north to the south of the basin. It is associated with strong mixing with spots of higher vertical diffusivity in the thermocline and intermediate layer. In the upper layer, the mixed layer depth in the Halmahera Sea is relatively shallow with an average of about 16.95 m and it is associated with weak wind stress during this month.