Franto Novico
Marine Geological Research and Development Center, Ministry of Energy and Mineral Resources

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Application of Offshore HDPE Pipes Route Design in North Maluku Indonesia Franto Novico; Indra Kurniawan; Andi Egon; Davide Merli
ILMU KELAUTAN: Indonesian Journal of Marine Sciences Vol 26, No 1 (2021): Ilmu Kelautan
Publisher : Marine Science Department Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ik.ijms.26.1.45-56

Abstract

The lack of fresh water for the inhabitants of Maitara island is a very urgent problem to be solved. Two main factors at least must be taken into account to deliberate the right of way of subsea High-density polyethylene (HDPE) pipes, namely the hydrodynamic conditions and of a block analysis. This paper presents the study to justify the best route of subsea HDPE pipes based on hydrodynamic model analysis and concrete block strategy. The method used to analyze the best route includes 2 aspects. Firstly, the investigation method consisting of a bathymetric survey conducted by a single beam echosounder, 15 days tidal observations and seabed sediment sampling. Secondly, the hydrodynamic modelling analysis using Mike 21 FMHD and concrete block analysis, all these studies have been completed in August 2018. In the morphological behaviour analysis, three alternative routes are considered for the subsea HDPE pipes from Tidore Island to Maitara Island. The outcome of the analysis shows that the second track line option has the smallest impact by the hydrodynamic conditions, with a current speed of less than 0,5m/sec and a significant wave height of fewer than 1.2 meters. Furthermore, the uniformity of the lithology along the route is the other reason to select the second route. Finally, the concrete block analysis generated a minimum dimension of 75cm x 60cm x 30cm, and a free span of 3 meters is safe to absorb the uplift and drag forces acting on the pipe.
Tidal Current Energy Resources Assessment in the Patinti Strait, Indonesia Franto Novico; Evi Hadrijantie Sudjono; Andi Egon; David Menier; Manoj Methew; Munawir Bintang Pratama
International Journal of Renewable Energy Development Vol 10, No 3 (2021): August 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.35003

Abstract

Indonesia is currently intensively developing its renewable energy resource and targets at least 23% by 2025. As an archipelago country, Indonesia has the potential to benefit from its abundant renewable energy resources from its offshore regions. However, the short tidal range of mixed semi-diurnal and the suitable tidal turbine capacity may hinder marine renewable energy development in Indonesian waters. This paper presents higher-order hydrodynamic numerical models to provide spatial information for tidal current resource assessment of the Patinti Strait. The present study applied the hydrographic and oceanographic method to produce input of the numerical model. Based on the selected simulation analysis, the highest current speed could be identified around Sabatang and Saleh Kecil Island with up to 2.5 m/s in P1 and 1.7 m/s in P4. Besides, the operational hours for the two observation points are 69% and 74.5%, respectively. The results indicate that this location is of prime interest for tidal turbine implementation as an energy source, for medium capacity (300 kW) and high capacity (1 MW).