Wahyudi Budi Sediawan
Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Kinetic Study of limonene and glucose adsorption on immobilization and coimmobilization beads Astrilia - Damayanti; Sarto - Sarto; Wahyudi Budi Sediawan
Reaktor Volume 18 No. 2 June 2018
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (580.266 KB) | DOI: 10.14710/reaktor.18.2.57-62

Abstract

Rotten oranges contain glucose and limonene, in which limonene is an inhibitor of microorganisms. Immobilization of mixed culture used the entrapment method is the easiest method of protecting the mixed culture from inhibitors. Entrapment method with extrusion drip is an efficient and effective technique to produce beads. This study aims to determine the adsorption rate of adsorbate (glucose and limonene) on the adsorbent surface (beads). Materials used in this study were glucose, DL-limonene, mixed culture, and beads. Three types of beads consisted of alginate - no mixed culture (A), alginate and activated carbon - no mixed culture (CA), alginate and activated carbon - free mixed culture (CB). Adsorption column consist of 30 ml nutrient, 15 mL substrate, and 5 mL beads. If the beads do not contain mixed culture, nutrients and substrate were replaced by aquadest. The reactor was done in a batch system at 37oC. The lowest order of beads ability to adsorb glucose were AG followed by CAG and finally CBG, whereas to limonene solution were AL followed by CBL and finally CAL. Lagergren model was used to determined kinetic bioadsorption on limonene and glucose. The adsorption rate value in the pseudo-second order (k2,ad) for the glucose solution was ranged between 0.025 to 0.087 min-1, while the D-limonene was in the range between 2.084 to 5.233 min-1. Adsorption of glucose and limonene on the surface of the three types of adsorbents was reached steady state at the 60th minute.Keywords: orange, limonene, immobilization, adsorption, Lagergren model.
Kinetic Studies of the Glycerolysis of Urea to Glycerol Carbonate in the Presence of Amberlyst-15 as Catalyst Hary Sulistyo; Wahyudi Budi Sediawan; Reviana Inda Dwi Suyatno; Indah Hartati
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.1.8893.52-62

Abstract

Amberlyst-15, a strong acidic ion-exchange resin, has showed as a potential and an effective catalyst for the glycerolysis process of urea to glycerol carbonate. In this work, the kinetic model of the urea glycerolysis over Amberlyst-15 catalyst was investigated. The kinetic model was developed by considering simultaneous steps of urea dissolution in glycerol, mass transfer of urea and glycerol from the bulk of the liquid into the outer part of the catalyst, diffusion of urea and glycerol into the inner part of the particle through the catalyst pores, and irreversible second order reaction of urea and glycerol on the active sites. The irreversibility of second order reaction of urea glycerolysis was validated and proven. The proposed kinetic model was simulated and validated with the experimental data. The kinetic studies show that mechanism proposed works well. Furthermore, the activation energy was found to be 145.58 kJ.mol−1 and the collision factor was in 8.00×1010 (m3)2.kg−1.mol−1.s−1. The simulation result shows that the predicted liquid temperatures were close to the experimental temperature data. It also gave glycerol concentration profile inside the catalyst particle as a function of glycerolysis time and position. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Kinetic Studies of the Glycerolysis of Urea to Glycerol Carbonate in the Presence of Amberlyst-15 as Catalyst Hary Sulistyo; Wahyudi Budi Sediawan; Reviana Inda Dwi Suyatno; Indah Hartati
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.1.8893.52-62

Abstract

Amberlyst-15, a strong acidic ion-exchange resin, has showed as a potential and an effective catalyst for the glycerolysis process of urea to glycerol carbonate. In this work, the kinetic model of the urea glycerolysis over Amberlyst-15 catalyst was investigated. The kinetic model was developed by considering simultaneous steps of urea dissolution in glycerol, mass transfer of urea and glycerol from the bulk of the liquid into the outer part of the catalyst, diffusion of urea and glycerol into the inner part of the particle through the catalyst pores, and irreversible second order reaction of urea and glycerol on the active sites. The irreversibility of second order reaction of urea glycerolysis was validated and proven. The proposed kinetic model was simulated and validated with the experimental data. The kinetic studies show that mechanism proposed works well. Furthermore, the activation energy was found to be 145.58 kJ.mol−1 and the collision factor was in 8.00×1010 (m3)2.kg−1.mol−1.s−1. The simulation result shows that the predicted liquid temperatures were close to the experimental temperature data. It also gave glycerol concentration profile inside the catalyst particle as a function of glycerolysis time and position. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).