Claim Missing Document

Found 2 Documents

Deep learning application using neural network classification for cyberspace dataset with backpropagation algorithm and log-linear models Baiq Siska Febriani Astuti; Tuti Purwaningsih
Jurnal Informatika Vol 12, No 1: January 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (557.249 KB) | DOI: 10.26555/jifo.v12i1.a8566


This study aims to classify bloggers in the Kohkiloye and Boyer Ahmad Province in Iran where causes of users tend cyberspace on there. The database was got from UCI Machine Learning Repository. There are 100th object and 6th variables. All of the variables were Professional Bloggers, Political and Social Space (LPSS), Local Media Turnover (LMT), Political Caprice, Topics, and Degree. This study has using Artificial Neural Network with backpropagation algorithm and Log-linear models for classify Bloggers (Cyber Space). We classify blogger to two groups: professional bloggers and seasonal (temporary) bloggers. The result of this study is Neural network with backpropagation algorithm has been shown to be useful tool for prediction, especially for this case. From this study, we can see on the result that miss-classification with backpropagation algorithm less than using Log-Linear Models
Model Evaluation for Logistic Regression and Support Vector Machines in Diabetes Problem Baiq Siska Febriani Astuti; Neni Alya Firdausanti; Santi Wulan Purnami
Inferensi Vol 1, No 2 (2018): Inferensi
Publisher : Department of Statistics ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (557.911 KB) | DOI: 10.12962/j27213862.v1i2.6728


Machine learning is a method or computational algorithm to solve problems based on data that already available from the database. Classification is one of the important methods of supervised learning in machine learning. Support Vector Machine and Logistic Regression are some supervised learning methods that can be used both for classification and regression. In datamining process, Preprocessing is an important part before doing further analysis. In preprocessing data, feature selection and deviding training and testing data are important part of preprocessing data. In this research will be compared some evaluation model of deviding method for training and testing data, namely Random Repeated Holdout, Stratified Repeated Holdout, Random Cross-Validation, and Startified Cross-Validation. Evaluation model would be implying in logistic regression and Support Vector Machines (SVMs). From the analysis, can be concluded that by selecting features can improve the accuracy of classification with logistic regression, but opposite of Support Vector Machines (SVMs). For training and testing data pertition method can not be sure what method is better, because each method of partition training and testing data using the concept of random selection. Model evaluation cannot sure influence to increase best perform for SVMs model in particular this case.