Muhammad Zainuddin Lubis
Jurusan Teknik informatika konsentrasi Teknik Geomatika, Politeknik Negeri Batam

Published : 15 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 15 Documents
Search

Acoustic systems (split beam echo sounder ) to determine abundance of fish in marine fisheries Lubis, Muhammad Zainuddin; Manik, Henry M
Journal of Geoscience, Engineering, Environment, and Technology Vol 2 No 1 (2017): JGEET Vol 02 No 01 : March (2017)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (473.936 KB) | DOI: 10.24273/jgeet.2017.2.1.38

Abstract

Acoustic waves are transmitted into the subsurface ocean will experience scattering (scattering) caused by marine organisms, material distributed in the ocean, the structure is not homogeneous in seawater, as well as reflections from the surface and the seabed. Estimation of fish stocks in the waters wide as in Indonesia have a lot of them are using the acoustic method. The acoustic method has high speed in predicting the size of fish stocks so as to allow acquiring data in real time, accurate and high speed so as to contribute fairly high for the provision of data and information of fishery resources.  Split beam echo sounder comprises two aspects, and a transducer. The first aspect is the high-resolution color display for displaying echogram at some observations and also serves as a controller in the operation of the echo sounder. The second aspect is transceiver consisting of transmitter and receiver. The Echosounder divided beam first inserted into the ES 3800 by SIMRAD beginning of the 1980s and in 1985 was introduced to fishermen in Japan as a tool for catching up. Split beam transducer is divided into four quadrants.  Factors that contribute affect the value of Target Strength (TS) fish Strength target can generally be influenced by three factors: a target factor itself, environmental factors, and factors acoustic instrument. Factors include the size of the target, the anatomy of fish, swim bladder, the behavior of orientation.
Review: Marine Seismic And Side-Scan Sonar Investigations For Seabed Identification With Sonar System Lubis, Muhammad Zainuddin; Anggraini, Kasih; Kausarian, Husnul; Pujiyati, Sri
Journal of Geoscience, Engineering, Environment, and Technology Vol 2 No 2 (2017): JGEET Vol 02 No 02 : June (2017)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (985.957 KB) | DOI: 10.24273/jgeet.2017.2.2.253

Abstract

Marine seismic reflection data have been collected for decades and since the mid-to late- 1980s much of this data is positioned relatively accurately. Marine geophysical acquisition of data is a very expensive process with the rates regularly ship through dozens of thousands of euros per day. Acquisition of seismic profiles has the position is determined by a DGPS system and navigation is performed by Hypack and Maxview software that also gives all the offsets for the equipment employed in the survey. Examples of some projects will be described in terms of the project goals and the geophysical equipment selected for each survey and specific geophysical systems according to with the scope of work. For amplitude side scan sonar image, and in the multi-frequency system, color, becoming a significant properties of the sea floor, the effect of which is a bully needs to be fixed. The main confounding effect is due to absorption of water; geometric spread; shape beam sonar function (combined transmit-receive sonar beam intensity as a function of tilt angle obtained in this sonar reference frame); sonar vehicle roll; form and function of the seabed backscatter (proportion incident on the seabed backscattered signal to sonar as a function of the angle of incidence relative to the sea floor); and the slope of the seabed. The different angles of view are generated by the translation of the sonar, because of the discrete steps involved by the sequential pings, the angular sampling of the bottom.
Using Side-Scan Sonar instrument to Characterize and map of seabed identification target in punggur sea of the Riau Islands, Indonesia. Lubis, Muhammad Zainuddin; Anurogo, Wenang; Khoirunnisa, Hanah; Irawan, Sudra; Gustin, Oktavianto; Roziqin, Arif
Journal of Geoscience, Engineering, Environment, and Technology Vol 2 No 1 (2017): JGEET Vol 02 No 01 : March (2017)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (771.113 KB) | DOI: 10.24273/jgeet.2017.2.1.11

Abstract

Punggur sea has many habitats, object, and structured of seabed with hight tide and wave. Side scan sonar is an underwater acoustic instrument for identification of seabed. This research aims to classify types of seabed and measure seabed identification into the sea water with grain size (dB), location, altitude (m) and target using side scan sonar instrument. This research also uses one types of side scan sonar in one places with 3 line of collecting data to get more variant seabed. Side scan sonar data of 20 km of side-scan sonar profiling (CM2, C-MAX Ltd, UK) with altitude max 20 m and a working acoustic frequency of 325 kHz with the zone is taken in the punggur sea (104°08.7102 E, 1°03.2448 N until 1°03.3977N 104°08.8133 E). The data side scan sonar processed using max view software to display the image of the seabed. Results of seabed imagery in the punggur sea on track 1 have Objects found on the ship coordinates 03.3101N 1 ° and 104 ° 08.7362 E with the highest gain value is 6 dB, altitude 18 m on ping 75. Linear regression has y = 0.7016x+12.952 with R2 = 0.4125 (41%). Track 2 has target 1 is the sunken object on the seabed, while objects in the form of sand can be seen clearly. Objects found on the sunken object coordinates 1°02.8143 N ° and 104°08.5228 E with highest gain value is 9 dB with altitude 17.7 m and data ping 69. Linear regression has y = 0.2093+12.577 with R2 = 0.2093 (20%). Track 3 has Target 1 is the ship object on the seabed, while objects in the form of sand can be seen clearly. Objects found on the sunken object coordinates 1°02.5817 N and 104°08.7337 E with the highest gain value is 8 dB with altitude 16.5 m and data ping 3984. Linear regression has y = 0.5106x +12.84 with R2 = 0.5106 (51%). Track 1 has many targets identification results compared Track 2 and 3.
Geology Structure Identification Using Pre-Stack Depth Migration (PSDM) Method of Tomography Result in North West Java Basin Irawan, Sudra; Lubis, Muhammad Zainuddin
Journal of Geoscience, Engineering, Environment, and Technology Vol 2 No 2 (2017): JGEET Vol 02 No 02 : June (2017)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (799.619 KB) | DOI: 10.24273/jgeet.2017.2.2.297

Abstract

North West Java Basin is a tertiary sedimentary basin which is located in the right of the western part of the Java island. North West Java Basin is geodynamic where currently located at the rear position of the path of the volcanic arc of Java that is the result of the India-Australia plate subduction to the south towards the Eurasian plate (Explanation of Sunda) in the north. Geology structure observation is difficult to be conducted at Quaternary volcanicfield due to the classical problem at tropical region. In the study interpretation of fault structures can be done on a cross-section of Pre-Stack Depth Migration (PSDM) used prayer namely Hardware Key Device, ie Central Processing Unit: RedHat Enterprise Linux AS 5.0, prayer Monitor 24-inch pieces, Server: SGI altix 450/SuSe Linux Enterprise Server 9.0, 32 GB, 32 X 2,6 GHz Procesor, network: Gigabyte 1 Gb/s, and the software used is paradigm, product: Seismic Processing and Imaging. The third fault obtained in this study in accordance with the geological information derived from previous research conducted by geologists. The second general direction is northwest-southeast direction represented by Baribis fault, fault-fault in the Valley Cimandiri and Gunung Walat. This direction is often known as the directions Meratus (Meratus Trend). Meratus directions interpreted as directions that follow the pattern of continuous arc Cretaceous age to Meratus in Kalimantan.
KARAKTERISTIK SUHU PERMUKAAN LAUT DAN KECEPATAN ANGIN DI PERAIRAN BATAM HUBUNGANNYA DENGAN INDIAN OCEAN DIPOLE (IOD) Surya, Ganda; Khoirunnisa, Hanah; Lubis, Muhammad Zainuddin; Anurogo, Wenang; Hanafi, Aditya; Rizky, Fajar; Timbang, Dirgan; Situmorang, Arini Dewi; Guspriyanto, Deny; Ramadhan, Wahyu Rizky; Mandala, Gio Fitra Tirta
Dinamika Maritim Vol 6 No 1 (2017): Dinamika Maritim, Vol. 6 No. 1, August 2017 (Special Edition)
Publisher : Coastal and Marine Resources Research Center, Raja Ali Haji Maritime University, Tanjungpinang, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1416.45 KB)

Abstract

PENGGUNAAN CITRA LANDSAT 8 UNTUK PEMETAAN PERSEBARAN LAMUN DI PESISIR PULAU BATAM Lubis, Muhammad Zainuddin; Sari, Dewi Puspa; Aprilliyanti, Titi; Daulay, Ari Kurniawan; Hanafi, Aditya; Ananda, Fitriya; Saputri, Dhea Ayu; Aminah, Siti; Zabid, Muhammad Anand Pratama; Ibrahim, Muhammad Maruf
Dinamika Maritim Vol 6 No 1 (2017): Dinamika Maritim, Vol. 6 No. 1, August 2017 (Special Edition)
Publisher : Coastal and Marine Resources Research Center, Raja Ali Haji Maritime University, Tanjungpinang, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (721.475 KB)

Abstract

Landsat 8 satellite provides information (image / picture / photo map) operating free which can be downloaded from the official website. Lyzenga analysis is used to correction of water column so that the appearance of the object in satellite sensors for the better. The study was conducted during the month of August 2016 using the method with Lyzenga, proofreading imagery, as well as classification. The purpose of this research is to know the distribution of sea grass in coastal areas of the island of Batam using Landsat 8, by looking at the physical parameters of the ocean in-situ temperature and dissolved oxygen (DO). These results indicate the relationship of the distribution of each station has the lowest value that is at Piayu sea, and the highest brightness values are in the area of Nongsa sea, dissolved oxygen (DO) is highest in the area Piayu sea and the highest temperature in the area Sekupang sea with a value of 80 mg/l and 36.50 C. His cause is not found in mono-specific sea grass life and the area, and there are no real ecological disturbances, such as the characteristics of the habitat, community structure, and the threat of sea grass distribution plan participate discussed.
KARAKTERISTIK KONDISI FISIK OSEANOGRAFI MENGGUNAKAN CITRA LANDSAT 8 DI LAUT BATAM Lubis, Muhammad Zainuddin; Daya, Andriansyah Pratama; Suzita, Suzita; Silaban, Robby Darlinto; Anjani, Meidy; Perananda, Ade; Gultom, Susi Indah Agustina; Sihaloho, Angela Moriana; Siahaan, Feby Angelin Garizi; Siboro, Amanda T.; Ghazali, Muhammad
Dinamika Maritim Vol 6 No 1 (2017): Dinamika Maritim, Vol. 6 No. 1, August 2017 (Special Edition)
Publisher : Coastal and Marine Resources Research Center, Raja Ali Haji Maritime University, Tanjungpinang, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1650.215 KB)

Abstract

The Coherency and Correlation between Sea Surface Temperature and Wind Velocity in Malacca Strait: Cross Wavelet Transform and Wavelet Coherency Application Khoirunnisa, Hanah; Wisha, Ulung Jantama; Lubis, Muhammad Zainuddin
Journal of Geoscience, Engineering, Environment, and Technology Vol 2 No 3 (2017): JGEET Vol 02 No 03 : September (2017)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1209.809 KB) | DOI: 10.24273/jgeet.2017.2.3.590

Abstract

This study tried to observe the correlation and coherency between sea surface temperature (SST) and wind velocity in the Malacca Strait at the year of 2015. The SST and wind velocity data with 6 hours interval step have been used in this study. S-Transform, the Cross Wavelet Transform, and the Wavelet Coherency were applied to observe the influence of the variation of sea surface temperature to the wind velocity in Malacca Strait. These methods could produce the phase lag and the time of occurrence between them. S-Transform was used to show the spectrum energy of the sea surface temperature variation. The strongest correlation between them has the period of 32 days during July to August and October to November at each point with significance level of 95 %. The coherency of them has the range of 4 to 64 days at each point. The last result is the spectrum energy of SST variation that has the period of 5 to 50 days at each point. It was similar to the result of the correlation and coherence period between the wind velocity and the SST data
Modified Soil-Adjusted Vegetation Index In Multispectral Remote Sensing Data for Estimating Tree Canopy Cover Density at Rubber Plantation Anurogo, Wenang; Lubis, Muhammad Zainuddin; Mufida, Mir'atul Khusna
Journal of Geoscience, Engineering, Environment, and Technology Vol 3 No 1 (2018): JGEET Vol 03 No 01 : March (2018)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (812.215 KB) | DOI: 10.24273/jgeet.2018.3.01.1003

Abstract

Forest inventories such as tree canopy density information require a long time and high costs, especially on extensive forest coverage. Remote sensing technology that directly captures the surface vegetation character with extensive recording coverage can be used as an alternative to carrying out such inventory activities. This research aims to determine the level of vegetation canopy cover density on rubber plants that became the location of the research and know the accuracy of the resulting data. The method used in this research is a combination of remote sensing image interpretation, geographic information system, and field measurement. Information retrieval from remote sensing data is done by using ASTER data imagery. This stage includes three parts, namely: pre-field stage, field stage, and post-field stage. The pre-field stage includes the collection of data to be used (including literature studies related to the theme of the study), image processing (geometric and radiometric correction), cropping, masking, land cover classification, vegetation index transformation, and sample determination. The final result of data processing showed that the density of the vegetation canopy in the research area ranged between 7.31 – 12.952 cm / m2 in each grade of vegetation density. These values indicate the range of low-class vegetation canopy cover density to high-class vegetation canopy cover density in the research area. In this research error rate or root mean square error obtained from the calculation of canopy cover density is equal to 1.89.
Seabed Detection Using Application Of Image Side Scan Sonar Instrument (Acoustic Signal) Lubis, Muhammad Zainuddin; Kausarian, Husnul; Anurogo, Wenang
Journal of Geoscience, Engineering, Environment, and Technology Vol 2 No 3 (2017): JGEET Vol 02 No 03 : September (2017)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (731.039 KB) | DOI: 10.24273/jgeet.2017.2.3.560

Abstract

The importance of knowing the method for seabed detection using side-scan sonar images with sonar instrument is a much-needed requirement right now. This kind of threat also requires frequent sonar surveys in such areas. These survey operations need specific procedures and special equipment to ensure survey correctness. In this paper describes the method of observation and retrieval of marine imagery data using an acoustic signal method, to determine a target based on the sea. Side scan sonar is an instrument consisting of single beam transducer on both sides. Side scan sonar (SSS) is a sonar development that is able to show in two-dimensional images of the seabed surface with seawater conditions and target targets simultaneously. The side scan sonar data processing is performed through geometric correction to establish the actual position of the image pixel, which consists of bottom tracking, slant-range correction, layback correction and radiometric correction performed for the backscatter intensity of the digital number assigned to each pixel including the Beam Angle Correction (BAC), Automatic Gain Control (AGC), Time Varied Gain (TVG), and Empirical Gain Normalization (EGN).