Aidin Amsyar
Politeknik Elektronika Negeri Surabaya, Indonesia

Published : 1 Documents Claim Missing Document
Claim Missing Document

Found 1 Documents

Load Identification Using Harmonic Based on Probabilistic Neural Network Dimas Okky Anggriawan; Aidin Amsyar; Eka Prasetyono; Endro Wahjono; Indhana Sudiharto; Anang Tjahjono
EMITTER International Journal of Engineering Technology Vol 7 No 1 (2019)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (529.473 KB) | DOI: 10.24003/emitter.v7i1.330


Due to increase power quality which are caused by harmonic distortion it could be affected malfunction electrical equipment. Therefore, identification of harmonic loads become important attention  in the power system. According to those problems, this paper proposes a Load Identification using harmonic based on probabilistic neural network (PNN). Harmonic is obtained by experiment using prototype, which it consists of microcontroller and current sensor. Fast Fourier Transform (FFT) method to analyze of current waveform on loads become harmonic load data. PNN is used to identify the type of load. To load identification, PNN is trained to get the new weight. Testing is conducted To evaluate of the accuracy of the PNN from combination of four loads. The results demonstrate that this method has high accuracy to determine type of loads based on harmonic load