Nur Ulfa Maulidevi
Institut Teknologi Bandung

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Product Review Ranking in e-Commerce using Urgency Level Classification Approach Zuhri, Hamdi Ahmad; Maulidevi, Nur Ulfa
JOIN (Jurnal Online Informatika) Vol 5, No 2 (2020)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v5i2.612

Abstract

Review ranking is useful to give users a better experience. Review ranking studies commonly use upvote value, which does not represent urgency, and it causes problems in prediction. In contrast, manual labeling as wide as the upvote value range provides a high bias and inconsistency. The proposed solution is to use a classification approach to rank the review where the labels are ordinal urgency class. The experiment involved shallow learning models (Logistic Regression, Naïve Bayesian, Support Vector Machine, and Random Forest), and deep learning models (LSTM and CNN). In constructing a classification model, the problem is broken down into several binary classifications that predict tendencies of urgency depending on the separation of classes. The result shows that deep learning models outperform other models in classification dan ranking evaluation. In addition, the review data used tend to contain vocabulary of certain product domains, so further research is needed on data with more diverse vocabulary.
Factors Influencing User’s Adoption of Conversational Recommender System Based on Product Functional Requirements Z.K. Abdurahman Baizal; Dwi H Widyantoro; Nur Ulfa Maulidevi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 14, No 4: December 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v14i4.4234

Abstract

Conversational recommender system (CRS) helps customers get products fitted their needs by repeated interaction mechanisms. When customers want to buy products having many and high tech features (e.g., cars, smartphones, notebook, etc.), most users are not familiar with product technical features. The more natural way to elicit customers’ needs is by asking what they really want to use with the product they want (we call as product functional requirements). In this paper, we analyze four factors, e.g., perceived usefulness, perceived ease of use, trust and perceived enjoyment  associated to user’s intention to adopt the interaction model (in CRS) based on product functional requirements. Result of experiment using technology acceptance model (TAM) indicates that, for users who aren’t familiar with technical features, perceives usefulness is a main factor influencing users’ adoption. Meanwhile, perceived enjoyment plays a role on user’s intention to adopt this interaction model, for users who are familiar with technical features of product.
Feature selection to increase the random forest method performance on high dimensional data Maria Irmina Prasetiyowati; Nur Ulfa Maulidevi; Kridanto Surendro
International Journal of Advances in Intelligent Informatics Vol 6, No 3 (2020): November 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i3.471

Abstract

Random Forest is a supervised classification method based on bagging (Bootstrap aggregating) Breiman and random selection of features. The choice of features randomly assigned to the Random Forest makes it possible that the selected feature is not necessarily informative. So it is necessary to select features in the Random Forest. The purpose of choosing this feature is to select an optimal subset of features that contain valuable information in the hope of accelerating the performance of the Random Forest method. Mainly for the execution of high-dimensional datasets such as the Parkinson, CNAE-9, and Urban Land Cover dataset. The feature selection is done using the Correlation-Based Feature Selection method, using the BestFirst method. Tests were carried out 30 times using the K-Cross Fold Validation value of 10 and dividing the dataset into 70% training and 30% testing. The experiments using the Parkinson dataset obtained a time difference of 0.27 and 0.28 seconds faster than using the Random Forest method without feature selection. Likewise, the trials in the Urban Land Cover dataset had 0.04 and 0.03 seconds, while for the CNAE-9 dataset, the difference time was 2.23 and 2.81 faster than using the Random Forest method without feature selection. These experiments showed that the Random Forest processes are faster when using the first feature selection. Likewise, the accuracy value increased in the two previous experiments, while only the CNAE-9 dataset experiment gets a lower accuracy. This research’s benefits is by first performing feature selection steps using the Correlation-Base Feature Selection method can increase the speed of performance and accuracy of the Random Forest method on high-dimensional data.