Khadijeh Ojaghi Aghbash
Department of Chemistry, Faculty of Science, Payame Noor University, P.O. Box 19395-3697, Tehran

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Silica-Supported Co3O4 Nanoparticles as a Recyclable Catalyst for Rapid Degradation of Azodye Ali Baghban; Esmail Doustkhah; Sadegh Rostamnia; Khadijeh Ojaghi Aghbash
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (818.813 KB) | DOI: 10.9767/bcrec.11.3.568.284-291

Abstract

In this paper, silica nanoparticles with particle size of ~ 10-20 nm were selected as a support for the synthesis of Co3O4 nanoparticles by impregnation of silica nanoparticles in solution of Co(II) in a specific concentrations and then calcination to 800 oC. This nanocomposite was then, used as a catalyst for oxidative degradation of methyl orange (MO) with ammonium persulfate in aqueous media. Effect of pH, temperature, contact time, amount of oxidant and catalyst were studied in the presence of manuscript. Scanning electron microscope (SEM), electron dispersive spectroscopy (EDS), FT-IR, and ICP-AES analyses were used for analysis of silica-supported Co3O4 (Co3O4/SiO2). Treating MO with ammonium persulfate in the presence of Co3O4/SiO2 led to complete degradation of MO under the optimized conditions. Also, the catalyst exhibited recyclability at least over 10 consecutive runs. 
Silica-Supported Co3O4 Nanoparticles as a Recyclable Catalyst for Rapid Degradation of Azodye Ali Baghban; Esmail Doustkhah; Sadegh Rostamnia; Khadijeh Ojaghi Aghbash
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.11.3.568.284-291

Abstract

In this paper, silica nanoparticles with particle size of ~ 10-20 nm were selected as a support for the synthesis of Co3O4 nanoparticles by impregnation of silica nanoparticles in solution of Co(II) in a specific concentrations and then calcination to 800 oC. This nanocomposite was then, used as a catalyst for oxidative degradation of methyl orange (MO) with ammonium persulfate in aqueous media. Effect of pH, temperature, contact time, amount of oxidant and catalyst were studied in the presence of manuscript. Scanning electron microscope (SEM), electron dispersive spectroscopy (EDS), FT-IR, and ICP-AES analyses were used for analysis of silica-supported Co3O4 (Co3O4/SiO2). Treating MO with ammonium persulfate in the presence of Co3O4/SiO2 led to complete degradation of MO under the optimized conditions. Also, the catalyst exhibited recyclability at least over 10 consecutive runs.