Machhindra Karbhari Lande
Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.), 431004

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Modification, Characterization, and Catalytic Application of Mesolite for One Pot Synthesis of 3-Methyl-4-arylmethylene-isoxazol-5(4H)-ones Ganesh Trambakrao Pawar; Sachin Pandit Gadekar; Balasaheb R. Arbad; Machhindra Karbhari Lande
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.12.1.655.32-40

Abstract

Natural mesolite type zeolite was collected, modified by sulphuric acid treatment and characterized by using Powder-X ray diffraction, Scanning electron microscopy and Energy dispersive spectroscopy, Fourier transform infrared spectroscopy. Temperature programmed ammonia desorption, Brunauer-Emmer-Teller surface area analysis. Modified dealuminated mesolite shows an efficient catalytic activity for one pot synthesis of 3-methyl-4-arylmethylene-isoxazol-5(4H)-ones derivatives, via one pot three component condensation of benzaldehyde, ethylacetoacetate and hydroxylamine hydrochloride. Present method offers several advantages over the reported methods like a simple and inexpensive modification of catalyst, mild reaction condition, easy separation of catalyst, simple work-up procedure, nonchromatographic isolation and purification desired product and excellent yield. Furthermore, catalyst could be reused without significant loose in activity. 
An Efficient Synthesis of 1,8-Dioxo-Octahydroxanthenes Derivatives Using Heterogeneous Ce-ZSM-11 Zeolite Catalyst Rameshwar R. Magar; Ganesh T. Pawar; Sachin P. Gadekar; Machhindra Karbhari Lande
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (107.633 KB) | DOI: 10.9767/bcrec.13.3.2062.436-446

Abstract

The Ce-ZSM-11 zeolite has been used as an efficient catalyst for the one pot synthesis of 1,8-dioxo-octahydroxanthene derivatives from aromatic aldehyde and 5,5-dimethyl-cyclohexane-1,3-dione under reflux condition. The catalyst was characterized by Powder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmer-Teller (BET) surface area analysis, and Temperature Programmed Desorption (TPD) techniques. This method provides several advantageous such as use of inexpensive catalyst, simple work-up procedure, high yield of desired product and reusability of catalyst. 
An Efficient Synthesis of 1,8-Dioxo-Octahydroxanthenes Derivatives Using Heterogeneous Ce-ZSM-11 Zeolite Catalyst Rameshwar R. Magar; Ganesh T. Pawar; Sachin P. Gadekar; Machhindra Karbhari Lande
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.3.2062.436-446

Abstract

The Ce-ZSM-11 zeolite has been used as an efficient catalyst for the one pot synthesis of 1,8-dioxo-octahydroxanthene derivatives from aromatic aldehyde and 5,5-dimethyl-cyclohexane-1,3-dione under reflux condition. The catalyst was characterized by Powder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmer-Teller (BET) surface area analysis, and Temperature Programmed Desorption (TPD) techniques. This method provides several advantageous such as use of inexpensive catalyst, simple work-up procedure, high yield of desired product and reusability of catalyst.