Claim Missing Document
Check
Articles

Found 23 Documents
Search

Analisis Accelerated Learning Pada Algoritma Backpropagation Menggunakan Adaptive Learning Rate Ermawati, Ermawati; Nababan, Erna Budhiarti; Mawengkang, Herman
SAMUDERA Vol 8, No 1 (2014)
Publisher : Universitas Malikussaleh

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Jaringan syaraf tiruan backpropagation merupakan algoritma pembelajaran yang terawasi dimana output dari jaringan dibandingkan dengan target yang diharapkan sehingga diperoleh error output. Banyak model pembelajaran yang menggunakan algoritma backpropagation. Namun algoritma backpropagation mempunyai keterbatasan yaitu laju konvergensi yang cukup lambat. Pada penelitian ini penulis menambahkan parameter learning rate secara adaptif pada setiap iterasi dan koefisien momentum untuk menghitung proses perubahan bobot. Dari hasil simulasi komputer maka diperoleh perbandingan antara algoritma backpropagation standar dengan backpropagation adaptive learning. Untuk algoritma backpropagation standar kecepatan konvergensi mencapai 1000 epoch dengan nilai Mean Square Error (MSE) yang dihasilkan adalah 0,00044 sedangkan untuk algoritma backpropagation adaptive learning hanya 72 epoch dengan nilai Mean Square Error (MSE) yang dihasilkan 0.0000036. Hal ini menunjukkan bahwa algoritma backpropagation adaptive learning lebih cepat mencapai konvergensi daripada algoritma backpropagation standar.
Perbandingan Waktu Eksekusi Algoritma Dsatur Dan Algoritma Pewarnaan Heuristik Tabu Search Pada Pewarnaan Graf Junidar,, Junidar,; Nababan, Erna Budhiarti
SAMUDERA Vol 7, No 1 (2013)
Publisher : Universitas Malikussaleh

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pewarnaan graf G adalah proses pemberian warna pada verteks - verteks di G, satu warna untuk setiap verteks, sehingga verteks - verteks yang bersisian mempunyai warna yang berbeda. Jika ada kemungkinan untuk menemukan pewarnaan yang tepat dari graf G, dengan menggunakan x warna, maka G dikatakan x-colorable. Bilangan kromatik dari graf G adalah bilangan bulat terkecil x dimana G adalah x-colorable, di notasikan dengan . Terdapat beberapa metode heuristik yang dapat digunakan untuk menyelesaikan permasalahan pewarnaan graf. Yaitu algoritma dsatur dan algoritma pewarnaan heuristik tabu search. 
Sistem Pendeteksian Manusia untuk Keamanan Ruangan menggunakan Viola – Jones Rahmat, Romi Fadillah; Sianturi, Jonatan; Nababan, Erna Budhiarti
JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING Vol 1, No 2 (2018): Edisi Januari
Publisher : Universitas Medan Area

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (656.955 KB) | DOI: 10.31289/jite.v1i2.1424

Abstract

Aspek keamanan sangat dibutuhkan dalam berbagai kehidupan saat ini seperti keamanan rumah, gedung, atau ruangan yang memiliki nilai penting bagi pemilik. Keamanan dapat dikerjakan oleh tenaga manusia tetapi cara ini kurang efisien karena menghabiskan banyak resources seperti uang, waktu, tenaga dan juga sangat rentan terhadap kelalaian manusia (human error). Oleh karena itu diperlukan suatu pendetekatan untuk dapat melakukan keamanan tersebut.Salah satu pendekatan yang dapat dilakukan adalah dengan melakukan pendeteksian objek manusia melalui kamera yang terhubung dengan komputer.Dalam penelitian ini digunakan Viola-Jones untuk mendeteksi objek manusia dalam citra berdasarkan fitur. Citra yang diinput dari webcam dengan fungsi capture dalam library OpenCV diubah menjadi citra abu-abu setelah mengalami proses scaling, dilanjutkan ekualisasi histogram, perhitungan fitur dengan citra integral, dan pendeteksian objek dengan cascade of classifier. Pada penelitian ini ditunjukkan bahwa metode yang diajukan mampu melakukan pendeteksian objek dengan hasil akurasi mencapai 86,88% . Kata Kunci : viola-jones, pendeteksian manusia, keamanan ruangan, cascade of classifier, opencv.
Sistem Pendeteksian Manusia untuk Keamanan Ruangan menggunakan Viola – Jones Jonatan Sianturi; Romi Fadillah Rahmat; Erna Budhiarti Nababan
JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING Vol 1, No 2 (2018): Edisi Januari
Publisher : Universitas Medan Area

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31289/jite.v1i2.1424

Abstract

Aspek keamanan sangat dibutuhkan dalam berbagai kehidupan saat ini seperti keamanan rumah, gedung, atau ruangan yang memiliki nilai penting bagi pemilik. Keamanan dapat dikerjakan oleh tenaga manusia tetapi cara ini kurang efisien karena menghabiskan banyak resources seperti uang, waktu, tenaga dan juga sangat rentan terhadap kelalaian manusia (human error). Oleh karena itu diperlukan suatu pendetekatan untuk dapat melakukan keamanan tersebut.Salah satu pendekatan yang dapat dilakukan adalah dengan melakukan pendeteksian objek manusia melalui kamera yang terhubung dengan komputer.Dalam penelitian ini digunakan Viola-Jones untuk mendeteksi objek manusia dalam citra berdasarkan fitur. Citra yang diinput dari webcam dengan fungsi capture dalam library OpenCV diubah menjadi citra abu-abu setelah mengalami proses scaling, dilanjutkan ekualisasi histogram, perhitungan fitur dengan citra integral, dan pendeteksian objek dengan cascade of classifier. Pada penelitian ini ditunjukkan bahwa metode yang diajukan mampu melakukan pendeteksian objek dengan hasil akurasi mencapai 86,88% . Kata Kunci : viola-jones, pendeteksian manusia, keamanan ruangan, cascade of classifier, opencv.
Sensitivity of shortest distance search in the ant colony algorithm with varying normalized distance formulas Rahmad Syah; Mahyuddin KM Nasution; Erna Budhiarti Nababan; Syahril Efendi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.18872

Abstract

The ant colony algorithm is an algorithm adopted from the behavior of ants which naturally ants are able to find the shortest route on the way from the nest to places of food sources based on footprints on the track that has been passed. The ant colony algorithm helps a lot in solving several problems such as scheduling, traveling salesman problems (TSP) and vehicle routing problems (VRP). In addition, ant colony has been developed and has several variants. However, in its function to find the shortest distance is optimized by utilizing several normalized distance formulas with the data used in finding distances between merchants in the mercant ecosystem. Where in the test normalized distance is superior Hamming distance in finding the shortest distance of 0.2875, then followed by the same value, namely the normalized formula Manhattan distance and normalized Euclidean distance with a value of 0.4675 and without using the normalized distance formula or the original ant colony algorithm gets a value 0.6635. Given the sensitivity in distance search using merchant ecosystem data, the method works well on the ant colony Algorithm using normalized Hamming distance.
Analisis Perbandingan Akurasi dalam Identifikasi Autism dengan SVM dan Naive Bayes Ferawaty -; Muhammad Zarlis; Erna Budhiarti Nababan
Jurnal SIFO Mikroskil Vol 17, No 2 (2016): JSM Volume 17 Nomor 2 Tahun 2016
Publisher : Lembaga Penelitian & Pengabdian pada Masyarakat (LPPM) Mikroskil

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (521.361 KB) | DOI: 10.55601/jsm.v17i2.384

Abstract

Gangguan autisme banyak ditemukan pada anak yang berumur 3 tahun ke bawah. Pendiagnosaan gangguan penyakit ini telah dilakukan dengan menggunakan berbagai metode, terutama metode dalam dunia psikologis. Peneliti menggunakan metode Support Vector Machine (SVM) dan metode Naive Bayes untuk menyelesaikan kasus gangguan autisme yang mengalami kesalahan diagnosa. Dalam hasil penelitian ini dilakukan perbandingan metode Support Vector Machine (SVM) dengan metode Naive Bayes. Metode Support Vector Machine (SVM) menghasilkan rata – rata klasifikasi 93,12%, sedangkan metode Naive Bayes menghasilkan rata – rata klasifikasi 73,34%.
Identifikasi Penyakit Diabetic Retinopathy menggunakan Learning Vector Quantization (LVQ) Rudy Chandra; Erna Budhiarti Nababan; Sawaluddin Sawaluddin
InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan Vol 6, No 1 (2021): InfoTekJar September
Publisher : Universitas Islam Sumatera Utara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30743/infotekjar.v6i1.3913

Abstract

Diabetic retinopathy (retinopati diabetik) merupakan sejenis penyakit mata yang terjadi pada pengidap diabetes. Untuk mendeteksi jenis penyakit ini, dokter mata biasanya akan melakukan pemeriksaan dengan cara memeriksa mata dengan pupil lebar dan komprehensif. Adapun hambatan dalam mendeteksi retinopati diabetik adalah alat pemeriksaan yang belum masif dan belum memadai serta masih memakan waktu dalam mengidentifikasi tahap demi tahap pada retina manual. Berdasarkan masalah tersebut dibutuhkanlah suatu sistem untuk membantu dokter dalam mengidentifikasi retina yaitu dengan menerapkan pattern recognition menggunakan algoritma Learning Vector Quantization (LVQ). Sistem yang dijalankan dengan memasukkan citra tetina kemudian akan melaui proses preprocessing citra dan ekstraksi fitur statistik untuk mendapatkan hasil yang sesuai untuk dilakukan identifikasi menggunakan LVQ. Data retina yang digunakan terbagi menjadi 3 yaitu data training, data validation dan data testing. Pada data validation diuji dan mendapatkan hyperparameter untuk membentuk model jaringan terbaik yaitu pada epoch 50 dan learning rate 0,001. Kemudian dilakukan pelatihan hingga menghasilkan bobot akhir dengan algoritma pelatihan LVQ. Bobot akhir tersebut akan digunakan pada proses pengujian dengan data uji dan menghasilkan accuracy 82% sensitivity 80% dan precision 83,33%
Implementation Of Face-To-Face Online Learning System Based On Audio Video, Presentation And Chat Using The Moodle E-Learning Platform Nababan, Erna Budhiarti; Opim Salim Sitompul; Dedy Arisandi; Seniman
ABDIMAS TALENTA: Jurnal Pengabdian Kepada Masyarakat Vol. 6 No. 1 (2021): ABDIMAS TALENTA : Jurnal Pengabdian Kepada Masyarakat
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (504.999 KB) | DOI: 10.32734/abdimastalenta.v6i1.5348

Abstract

Currently, the implementation of teaching and learning at SMP Negeri 1 Binjai Kwala Begumit was done in the classroom alternately. However, with the current condition of pandemic covid-19, the learning process no longer carried out fully in schools. The school has not been using information technology in the form of e-learning applications in the teaching and learning process. The school has difficulty in recording the existing teaching and learning process: assignments, exams, assessments, and other activities. Therefore the use of e-learning applications is now very much needed. With existing school facilities, such as internet facilities and the ICT teachers, training in developing and implementing e-learning for teaching staff become the best alternative so that learning process can be done properly.
Diagonal Based Feature Extraction and Backpropagation Neural Network in Handwritten Batak Toba Characters Recognition Zamzami, Elviawaty Muisa; Hayanti, Septi; Nababan, Erna Budhiarti
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 6, No. 2, May 2021
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v6i2.1212

Abstract

Handwritten character recognition is considered a complex problem since one’s handwritten character has its characteristics.  Data used for this research was a photo of handwritten or scanned handwritten.  In this research, Backpropagation Neural Network (BPNN) was used to recognize handwritten Batak Toba character, wherein preprocessing stage feature extraction was done using Diagonal Based Feature Extraction (DBFE) to obtain feature value.  Furthermore, the feature value will be used as an input to BPNN. The total number of data used was190 data, where 114 data was used for the training process and another 76 data was used for testing. From the testing process carried out, the accuracy obtained was 87,19 %.
Genetic Algorithms Dynamic Population Size with Cloning in Solving Traveling Salesman Problem Erna Budhiarti Nababan; Opim Salim Sitompul; Yuni Cancer
Data Science: Journal of Computing and Applied Informatics Vol. 2 No. 2 (2018): Data Science: Journal of Computing and Applied Informatics (JoCAI)
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1177.754 KB) | DOI: 10.32734/jocai.v2.i2-326

Abstract

Population size of classical genetic algorithm is determined constantly. Its size remains constant over the run. For more complex problems, larger population sizes need to be avoided from early convergence to produce local optimum. Objective of this research is to evaluate population resizing i.e. dynamic population sizing for Genetic Algorithm (GA) using cloning strategy. We compare performance of proposed method and traditional GA employed to Travelling Salesman Problem (TSP) of A280.tsp taken from TSPLIB. Result shown that GA with dynamic population size exceed computational time of traditional GA.