Gloria Inés Giraldo-Gómez
Department of Physics and Chemical, Faculty of Exact and Natural Sciences, Universidad Nacional de Colombia sede Manizales, Campus La Nubia, km 7 Vía al Aeropuerto, AA 127 Manizales

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Catalytic Oxidation of Ponceau 4R in Aqueous Solution using Iron-impregnated Al-pillared Bentonite: Optimization of the Process Paula Andrea Henao-Aguirre; Iván Fernando Macías-Quiroga; Gloria Inés Giraldo-Gómez; Nancy Rocío Sanabria-González
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.3.10757.491-506

Abstract

The application of the Fenton-like process for the oxidation of an aqueous solution of Ponceau 4R dye, using an aluminum pillared clay impregnated with iron (Fe(wt%)/Al-PILC) as catalyst, was investigated. The Response Surface Methodology (RSM), based on a Central Composite Design (CCD) was used to evaluate and optimize the oxidation process of a Ponceau 4R solution. Three independent variables were studied in the experimental design: the amount of H2O2 expressed in multiples of times of stoichiometry dose, iron concentration incorporated by impregnation onto aluminum pillared clay (Fe(wt%)), and amount of catalyst (Fe(wt%)/Al-PILC). The response variables were decolorization and total organic carbon (TOC) removal. The significance of independent variables and their interactions were tested by means of analysis of variance (ANOVA), with a 95% confidence level. With low stoichiometric dose of H2O2 (0.96 and 1.54 times), medium amount of catalyst (374.4 and 391.3 mg) and high Fe concentration impregnated in pillared clay (9.3 and 7.7 wt%), the total decolorization and high TOC removal were achieved. Under multi-objective optimization conditions (3.0 times the stoichiometric dose of H2O2, 420 mg Fe(wt%)/Al-PILC and 5.5 wt% Fe impregnated in Al-PILC), it was possible to achieve 86.18% decolorization and 66.81% TOC removal after 5 h of reaction at 25 °C, with the additional advantage of showing an iron leaching of less than 0.10 mg/L. The established models' soundness is confirmed by a good fit between predictive models and experimental results. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Catalytic Oxidation of Tartrazine in Aqueous Solution Using a Pillared Clay with Aluminum and Iron Ángel David Gálvez-Serna; Iván Fernando Macías-Quiroga; Gloria Inés Giraldo-Gómez; María Teresa Dávila-Arias; Nancy Rocío Sanabria-González
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.1.9978.76-87

Abstract

In this work, pillared bentonite with Al−Fe (Al−Fe−PILC) was synthesized and used as a heterogeneous Fenton-like catalyst in the oxidation of tartrazine azo-dye in an aqueous solution. The modification of bentonite with the Al-Fe mixed system in a concentrated medium, with ultrasound assisted intercalation was carried out, and the obtained catalyst was characterized by XRF, XRD, and N2 adsorption at 77 K. The oxidation of tartrazine with Al−Fe−PILC, using different amounts of H2O2, expressed as a multiple (1, 3, 6, and 9) of a stoichiometry amount required to completely oxidize the dye was evaluated. The reaction of catalytic wet peroxide oxidation (CWPO) of the dye with 400 mg of Al−Fe−PILC and 6 times the stoichiometric amount of H2O2 at 25 °C, reached 98.2±1.8% of decolorization, 51.9±1.9% of TOC removal and 71.5±1.8% of TN removal. Results of this study show that the oxidation of tartrazine increased with the amount of H2O2 up to a certain limit. This oxidation process can be considered as an alternative for treating wastewater containing azo-dye because the reaction takes place under mild experimental conditions (room temperature and atmospheric pressure). Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA  License (https://creativecommons.org/licenses/by-sa/4.0). 
Catalytic Oxidation of Tartrazine in Aqueous Solution Using a Pillared Clay with Aluminum and Iron Ángel David Gálvez-Serna; Iván Fernando Macías-Quiroga; Gloria Inés Giraldo-Gómez; María Teresa Dávila-Arias; Nancy Rocío Sanabria-González
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.1.9978.76-87

Abstract

In this work, pillared bentonite with Al−Fe (Al−Fe−PILC) was synthesized and used as a heterogeneous Fenton-like catalyst in the oxidation of tartrazine azo-dye in an aqueous solution. The modification of bentonite with the Al-Fe mixed system in a concentrated medium, with ultrasound assisted intercalation was carried out, and the obtained catalyst was characterized by XRF, XRD, and N2 adsorption at 77 K. The oxidation of tartrazine with Al−Fe−PILC, using different amounts of H2O2, expressed as a multiple (1, 3, 6, and 9) of a stoichiometry amount required to completely oxidize the dye was evaluated. The reaction of catalytic wet peroxide oxidation (CWPO) of the dye with 400 mg of Al−Fe−PILC and 6 times the stoichiometric amount of H2O2 at 25 °C, reached 98.2±1.8% of decolorization, 51.9±1.9% of TOC removal and 71.5±1.8% of TN removal. Results of this study show that the oxidation of tartrazine increased with the amount of H2O2 up to a certain limit. This oxidation process can be considered as an alternative for treating wastewater containing azo-dye because the reaction takes place under mild experimental conditions (room temperature and atmospheric pressure). Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA  License (https://creativecommons.org/licenses/by-sa/4.0).