Norazwina Zainol
Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Gambang, Pahang

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Evaluation of Enzyme Kinetic Parameters to Produce Methanol Using Michaelis-Menten Equation Norazwina Zainol; Siti Natrah Ismail
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 2 Year 2019 (August 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (62.793 KB) | DOI: 10.9767/bcrec.14.2.3317.436-442

Abstract

Determination of kinetic parameters of enzymes is important in biotechnology research. It is also one of the most challenging processes in methanol production. The activity of enzyme is determined in term of initial rates at various substrate concentrations. The enzymatic hydrolysis of methanol by pectin methyl esterase (PME) enzyme was investigated at 25 °C and pH 9 over the reaction time range from 0 to 90 min. In this study, the parameters of the enzyme's kinetic, KM and Vmax were directly determined using a modified Michaelis-Menten equation by applying the Lineweaver-Burk plots. Besides, nonlinear regression of Michaelis-Menten equation was calculated based on Euler’s and Runge-Kutta 4th order methods by using Solver supplement application. The result of kinetic constant was tested by comparing the experimental data with model predictions. It was found that Euler and Runge-Kutta method was successful in determining the kinetic parameter rather than Lineweaver-Burk plot. The application of the Michaelis-Menten equation describes the enzyme kinetic very well. From the kinetic analysis, it showed the good agreement between the result obtained and the predictions model in the production of methanol using PME enzyme.  
Evaluation of Enzyme Kinetic Parameters to Produce Methanol Using Michaelis-Menten Equation Norazwina Zainol; Siti Natrah Ismail
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 2 Year 2019 (August 2019)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.14.2.3317.436-442

Abstract

Determination of kinetic parameters of enzymes is important in biotechnology research. It is also one of the most challenging processes in methanol production. The activity of enzyme is determined in term of initial rates at various substrate concentrations. The enzymatic hydrolysis of methanol by pectin methyl esterase (PME) enzyme was investigated at 25 °C and pH 9 over the reaction time range from 0 to 90 min. In this study, the parameters of the enzyme's kinetic, KM and Vmax were directly determined using a modified Michaelis-Menten equation by applying the Lineweaver-Burk plots. Besides, nonlinear regression of Michaelis-Menten equation was calculated based on Euler’s and Runge-Kutta 4th order methods by using Solver supplement application. The result of kinetic constant was tested by comparing the experimental data with model predictions. It was found that Euler and Runge-Kutta method was successful in determining the kinetic parameter rather than Lineweaver-Burk plot. The application of the Michaelis-Menten equation describes the enzyme kinetic very well. From the kinetic analysis, it showed the good agreement between the result obtained and the predictions model in the production of methanol using PME enzyme.