Aysar Talib Jarullah
Chemical Engineering Department, College of Engineering, Tikrit University

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Design of a Synthetic Zinc Oxide Catalyst over Nano-Alumina for Sulfur Removal by Air in a Batch Reactor Amer T. Nawaf; Aysar Talib Jarullah; Layth T. Abdulateef
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (497.781 KB) | DOI: 10.9767/bcrec.14.1.2507.79-92

Abstract

Owing to the environmental regulations with respect to sulfur content and continuing challenges of finding a suitable catalyst of such impurity, a driving force for the development of more efficient technologies a deep research on new oxidative catalysts is considered an important issue in fuel quality improvement. Thus, the present study shows a novel percent of nano-catalyst with 18% zinc oxide (ZnO) of active component over nano-alumina that has not been reported in the public domain for sulfur removal from kerosene fuel by air (oxidative desulfurization (ODS) method). Where, such percent of the active component on the nano-alumina helps to add one or two atoms of oxygen to sulfur content in the kerosene. The nano-catalyst (ZnO/nano-alumina-particles composite) is prepared by precipitation of zinc oxide and loaded over nano-alumina in one-step. The activity of the prepared catalyst was tested utilizing ODS process of kerosene fuel by air in a batch reactor. A set of experiments were conducted with a wide range of operating conditions, where the reaction temperature was ranged from 150 to 190ºC, the reaction time from 30 to 50 min and the catalyst weight from 0.4 to 1 g. The experimental results showed that the chemical nature of zinc oxides showed higher conversion (70.52%) at reaction temperature of 190 ºC, reaction time of 50 min, and 1 g catalyst weight used in the batch reactor. A kinetic model related to the sulfur removal from kerosene via ODS process in the batch reactor was also investigated in this study for the purpose of estimating the best kinetic parameters of the relevant reactions. The results showed that the prepared catalyst (ZnO over nano-alumina) can be applied confidently to reactor design, operation and control in addition to improve the fuel quality. Following the kinetic model of ODS process, a very well agreement between the experimental and predicted results is obtained. Copyright © 2019 BCREC Group. All rights reserved 
A Novel Synthetic Nano-Catalyst (Ag2O3/Zeolite) for High Quality of Light Naphtha by Batch Oxidative Desulfurization Reactor Amer Talal Nawaf; Shymaa Ali Hameed; Layth T. Abdulateef; Aysar Talib Jarullah; Mohammed S. Kadhim; Iqbal M. Mujtaba
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 4 Year 2021 (December 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.4.11383.716-732

Abstract

Oxidative desulfurization process (ODS), enhanced with a novel metal oxide (Ag ions) as an active component over nano-zeolite that has not been reported in the literature, is used here to improve the fuel quality by removing mercaptan (as a model sulfur compound in the light naphtha). Nano-crystalline (nano-support (Nano-zeolite)) composite is prepared by Incipient Wetness Impregnation method loaded with a metal salt to obtain 0.5, 1 and 1.5% of Ag2O3 over Nano-zeolite. The new homemade nano-catalysts (Ag2O3/Nano-zeolite) prepared are characterized by Brunauer–Emmett–Teller (BET) (surface area, pore volume and pore size), X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscopy (SEM) analysis. The ODS process is then used to evaluate the performance of the catalysts for the removal of sulfur at different reaction temperatures (80–140 °C) and reaction times (30–50 min) in a batch reactor using the air as oxidant. 87.4% of sulfur removal has been achieved using 1% silver oxide loaded on Nano zeolite (1% of Ag2O3/Nano-zeolite) giving a clear indication that our newly designed catalyst is highly efficient catalyst  in the removal of sulfur compound (mercaptan) from naphtha. A new mechanism of chemical reaction for sulfur removal by oxygen using the new homemade catalyst (Ag2O3/Nano-zeolite) prepared has been suggested in this study. The best kinetic model parameters of the relevant reactions are also estimated in this study using pseudo first order technique based on the experimental results. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
A Novel Synthetic Nano-Catalyst (Ag2O3/Zeolite) for High Quality of Light Naphtha by Batch Oxidative Desulfurization Reactor Amer Talal Nawaf; Shymaa Ali Hameed; Layth T. Abdulateef; Aysar Talib Jarullah; Mohammed S. Kadhim; Iqbal M. Mujtaba
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 4 Year 2021 (December 2021)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.4.11383.716-732

Abstract

Oxidative desulfurization process (ODS), enhanced with a novel metal oxide (Ag ions) as an active component over nano-zeolite that has not been reported in the literature, is used here to improve the fuel quality by removing mercaptan (as a model sulfur compound in the light naphtha). Nano-crystalline (nano-support (Nano-zeolite)) composite is prepared by Incipient Wetness Impregnation method loaded with a metal salt to obtain 0.5, 1 and 1.5% of Ag2O3 over Nano-zeolite. The new homemade nano-catalysts (Ag2O3/Nano-zeolite) prepared are characterized by Brunauer–Emmett–Teller (BET) (surface area, pore volume and pore size), X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscopy (SEM) analysis. The ODS process is then used to evaluate the performance of the catalysts for the removal of sulfur at different reaction temperatures (80–140 °C) and reaction times (30–50 min) in a batch reactor using the air as oxidant. 87.4% of sulfur removal has been achieved using 1% silver oxide loaded on Nano zeolite (1% of Ag2O3/Nano-zeolite) giving a clear indication that our newly designed catalyst is highly efficient catalyst  in the removal of sulfur compound (mercaptan) from naphtha. A new mechanism of chemical reaction for sulfur removal by oxygen using the new homemade catalyst (Ag2O3/Nano-zeolite) prepared has been suggested in this study. The best kinetic model parameters of the relevant reactions are also estimated in this study using pseudo first order technique based on the experimental results. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Design of a Synthetic Zinc Oxide Catalyst over Nano-Alumina for Sulfur Removal by Air in a Batch Reactor Amer T. Nawaf; Aysar Talib Jarullah; Layth T. Abdulateef
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.14.1.2507.79-92

Abstract

Owing to the environmental regulations with respect to sulfur content and continuing challenges of finding a suitable catalyst of such impurity, a driving force for the development of more efficient technologies a deep research on new oxidative catalysts is considered an important issue in fuel quality improvement. Thus, the present study shows a novel percent of nano-catalyst with 18% zinc oxide (ZnO) of active component over nano-alumina that has not been reported in the public domain for sulfur removal from kerosene fuel by air (oxidative desulfurization (ODS) method). Where, such percent of the active component on the nano-alumina helps to add one or two atoms of oxygen to sulfur content in the kerosene. The nano-catalyst (ZnO/nano-alumina-particles composite) is prepared by precipitation of zinc oxide and loaded over nano-alumina in one-step. The activity of the prepared catalyst was tested utilizing ODS process of kerosene fuel by air in a batch reactor. A set of experiments were conducted with a wide range of operating conditions, where the reaction temperature was ranged from 150 to 190ºC, the reaction time from 30 to 50 min and the catalyst weight from 0.4 to 1 g. The experimental results showed that the chemical nature of zinc oxides showed higher conversion (70.52%) at reaction temperature of 190 ºC, reaction time of 50 min, and 1 g catalyst weight used in the batch reactor. A kinetic model related to the sulfur removal from kerosene via ODS process in the batch reactor was also investigated in this study for the purpose of estimating the best kinetic parameters of the relevant reactions. The results showed that the prepared catalyst (ZnO over nano-alumina) can be applied confidently to reactor design, operation and control in addition to improve the fuel quality. Following the kinetic model of ODS process, a very well agreement between the experimental and predicted results is obtained. Copyright © 2019 BCREC Group. All rights reserved