Hadi Nur
Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia Central Laboratory of Minerals and Advanced Materials, Faculty of Mathematics and Natural Sc

Published : 1 Documents Claim Missing Document
Claim Missing Document

Found 1 Documents

Catalytic Performance of TiO2–Carbon Mesoporous-Derived from Fish Bones in Styrene Oxidation with Aqueous Hydrogen Peroxide as an Oxidant Mukhamad Nurhadi; Ratna Kusumawardani; Teguh Wirawan; Sumari Sumari; Sin Yuan Lai; Hadi Nur
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.1.9729.88-96


The catalytic performance of titania-supported carbon mesoporous-derived from fish bones (TiO2/CFB) has been investigated in styrene oxidation with aqueous H2O2. The preparation steps of (TiO2/CFB) catalyst involved the carbonization of fish bones powder at 500 °C for 2 h. followed by impregnation of titania using titanium(IV) isopropoxide (500 µmol) precursor, and calcined at 350 °C for 3 h. The physical properties of the adsorbents were characterized using Fourier transform infrared, X-ray diffraction (XRD), Scanning electron microscopy with energy dispersive X-ray (SEM-EDX), and nitrogen adsorption-desorption studies. The catalytic test was carried out using styrene oxidation with H2O2 as an oxidant at room temperature for 24 h. Its catalytic activity was compared with Fe2O3/CFB, CuO/CFB, TiO2, and CFB catalysts. It is demonstrated that the catalytic activity of TiO2/CFB catalyst has the highest compared to Fe2O3/CFB, CuO/CFB, TiO2, and CFB catalysts in the oxidation of styrene with styrene conversion ~23% and benzaldehyde selectivity ~90%. Kinetics of TiO2/CFB catalyzed oxidation of styrene has been investigated and mechanism for oxidation of styrene has been proposed. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA   License (https://creativecommons.org/licenses/by-sa/4.0).