Shamsul Rahman M. Kutty
Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Comparison of Five Advanced Oxidation Processes for Degradation of Pesticide in Aqueous Solution Augustine Chioma Affam; Malay Chaudhuri; Shamsul Rahman M. Kutty
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (14.603 KB) | DOI: 10.9767/bcrec.13.1.1394.179-186

Abstract

The study compared the technical efficiency and economic cost of five advanced oxidation processes (Fenton, UV photo-Fenton, solar photo-Fenton, UV/TiO2/H2O2 and FeGAC/H2O2) for degradation of the pesticides chlorpyrifos cypermethrin and chlorothalonil in aqueous solution. The highest degradation in terms of COD and TOC removals and improvement of the biodegradability (BOD5/COD ratio) index (BI) were observed to be (i) Fenton - 69.03% (COD), 55.61% (TOC), and 0.35 (BI); (ii) UV photo-Fenton -78.56% (COD), 63.76% (TOC) and 0.38 (BI);  (iii) solar photo-Fenton - 74.19% (COD), 58.32% (TOC) and 0.36 (BI); (iv) UV/TiO2/H2O2 - 53.62% (COD), 21.54% (TOC), and 0.26 (BI); and  (v) the most technical efficient and cost effective process was FeGAC/H2O2. At an optimum condition (FeGAC 5 g/L, H2O2 100 mg/L, and reaction time of 60 min at pH 3), the COD and TOC removal efficiency were 96.19 and 85.60%, respectively, and the biodegradation index was 0.40. The degradation rate constant and cost were 0.0246 min-1 and $0.74/kg TOC, respectively. The FeGAC/H2O2 process is the most technically efficient and cost effective for pretreatment of the pesticide wastewater before biological treatment. 
Comparison of Five Advanced Oxidation Processes for Degradation of Pesticide in Aqueous Solution Augustine Chioma Affam; Malay Chaudhuri; Shamsul Rahman M. Kutty
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.1.1394.179-186

Abstract

The study compared the technical efficiency and economic cost of five advanced oxidation processes (Fenton, UV photo-Fenton, solar photo-Fenton, UV/TiO2/H2O2 and FeGAC/H2O2) for degradation of the pesticides chlorpyrifos cypermethrin and chlorothalonil in aqueous solution. The highest degradation in terms of COD and TOC removals and improvement of the biodegradability (BOD5/COD ratio) index (BI) were observed to be (i) Fenton - 69.03% (COD), 55.61% (TOC), and 0.35 (BI); (ii) UV photo-Fenton -78.56% (COD), 63.76% (TOC) and 0.38 (BI);  (iii) solar photo-Fenton - 74.19% (COD), 58.32% (TOC) and 0.36 (BI); (iv) UV/TiO2/H2O2 - 53.62% (COD), 21.54% (TOC), and 0.26 (BI); and  (v) the most technical efficient and cost effective process was FeGAC/H2O2. At an optimum condition (FeGAC 5 g/L, H2O2 100 mg/L, and reaction time of 60 min at pH 3), the COD and TOC removal efficiency were 96.19 and 85.60%, respectively, and the biodegradation index was 0.40. The degradation rate constant and cost were 0.0246 min-1 and $0.74/kg TOC, respectively. The FeGAC/H2O2 process is the most technically efficient and cost effective for pretreatment of the pesticide wastewater before biological treatment.