Anggun Kurniawan
Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, SH, Kampus Undip Tembalang, Semarang 50275

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Preliminary Testing of Hybrid Catalytic-Plasma Reactor for Biodiesel Production Using Modified-Carbon Catalyst Luqman Buchori; Istadi Istadi; Purwanto Purwanto; Anggun Kurniawan; Teuku Irfan Maulana
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (381.707 KB) | DOI: 10.9767/bcrec.11.1.416.59-65

Abstract

Preliminary testing of hybrid catalytic-plasma reactor for biodiesel production through transesterification of soybean oil with methanol over modified-carbon catalyst was investigated. This research focused on synergetic roles of non-thermal plasma and catalysis in the transesterification process. The amount of modified-carbon catalyst with grain size of 1.75 mm was placed into fixed tubular reactor within discharge zone. The discharge zone of the hybrid catalytic-plasma reactor was defined in the volume area between high voltage and ground electrodes. Weight Hourly Space Velocity (WHSV) of 1.85 h-1 of reactant feed was studied at reaction temperature of 65 oC and at ambient pressure. The modified-carbon catalyst was prepared by impregnation of active carbon within H2SO4 solution followed by drying at 100 oC for overnight and calcining at 300 oC for 3 h. It was found that biodiesel yield obtained using the hybrid catalytic-plasma reactor was 92.39% and 73.91% when using active carbon and modified-carbon catalysts, respectively better than without plasma. Therefore, there were synergetic effects of non-thermal plasma and catalysis roles for driving the transesterification process. 
Preliminary Testing of Hybrid Catalytic-Plasma Reactor for Biodiesel Production Using Modified-Carbon Catalyst Luqman Buchori; Istadi Istadi; Purwanto Purwanto; Anggun Kurniawan; Teuku Irfan Maulana
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.11.1.416.59-65

Abstract

Preliminary testing of hybrid catalytic-plasma reactor for biodiesel production through transesterification of soybean oil with methanol over modified-carbon catalyst was investigated. This research focused on synergetic roles of non-thermal plasma and catalysis in the transesterification process. The amount of modified-carbon catalyst with grain size of 1.75 mm was placed into fixed tubular reactor within discharge zone. The discharge zone of the hybrid catalytic-plasma reactor was defined in the volume area between high voltage and ground electrodes. Weight Hourly Space Velocity (WHSV) of 1.85 h-1 of reactant feed was studied at reaction temperature of 65 oC and at ambient pressure. The modified-carbon catalyst was prepared by impregnation of active carbon within H2SO4 solution followed by drying at 100 oC for overnight and calcining at 300 oC for 3 h. It was found that biodiesel yield obtained using the hybrid catalytic-plasma reactor was 92.39% and 73.91% when using active carbon and modified-carbon catalysts, respectively better than without plasma. Therefore, there were synergetic effects of non-thermal plasma and catalysis roles for driving the transesterification process.