Moulkheir Ayat
Laboratory of Polymer Chemistry, Department of Chemistry, Faculty of Science, University of Oran 1. Ahmed Benbella. BP N ° 1524 El M'Naouar, 31000 Oran

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Selective Synthesis, Characterization and Kinetics Studies of poly(α-Methyl styrene) induced by Maghnite-Na+ Clay (Algerian MMT) Moulkheir Ayat; Mohamed Belbachir; Abdelkader Rahmouni
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (845.094 KB) | DOI: 10.9767/bcrec.11.3.578.376-388

Abstract

A new and efficient catalyst of Na-Montmorillonite (Na+-MMT) was employed in this paper for α-methylstyrene (AMS) cationic polymerization. Maghnite clay, obtained from Tlemcen Algeria, was investigated to remove heavy metal ion from wastewater. “Maghnite-Na” is a Montmorillonite sheet silicate clay, exchanged with sodium as an efficient catalyst for cationic polymerization of many vinylic and heterocyclic monomers. The various techniques, including 1H-NMR, 13C-NMR, IR, DSC and Ubbelohde viscometer, were used to elucidate structural characteristics and thermal properties of the resulting polymers. The structure compositions of “MMT”, “H+-MMT” and “Na+-MMT” have been developed. It was found that the cationic polymerization of AMS is initiated by Na+-MMT at 0 °C in bulk and in solution. The influences of reaction temperature, solvent, weight ratio of initiator/monomer and reaction time on the yield of monomer and the molecular weight are investigated. The kinetics indicated that the polymerization rate is first order with respect to the monomer concentration. A possible mechanism of this cationic polymerization is discussed based on the results of the 1H-NMR Spectroscopic analysis of these model reactions. A cationic mechanism for the reaction was proposed. From the mechanism studies, it was showed that monomer was inserted into the growing chains.
Selective Synthesis, Characterization and Kinetics Studies of poly(α-Methyl styrene) induced by Maghnite-Na+ Clay (Algerian MMT) Moulkheir Ayat; Mohamed Belbachir; Abdelkader Rahmouni
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.11.3.578.376-388

Abstract

A new and efficient catalyst of Na-Montmorillonite (Na+-MMT) was employed in this paper for α-methylstyrene (AMS) cationic polymerization. Maghnite clay, obtained from Tlemcen Algeria, was investigated to remove heavy metal ion from wastewater. “Maghnite-Na” is a Montmorillonite sheet silicate clay, exchanged with sodium as an efficient catalyst for cationic polymerization of many vinylic and heterocyclic monomers. The various techniques, including 1H-NMR, 13C-NMR, IR, DSC and Ubbelohde viscometer, were used to elucidate structural characteristics and thermal properties of the resulting polymers. The structure compositions of “MMT”, “H+-MMT” and “Na+-MMT” have been developed. It was found that the cationic polymerization of AMS is initiated by Na+-MMT at 0 °C in bulk and in solution. The influences of reaction temperature, solvent, weight ratio of initiator/monomer and reaction time on the yield of monomer and the molecular weight are investigated. The kinetics indicated that the polymerization rate is first order with respect to the monomer concentration. A possible mechanism of this cationic polymerization is discussed based on the results of the 1H-NMR Spectroscopic analysis of these model reactions. A cationic mechanism for the reaction was proposed. From the mechanism studies, it was showed that monomer was inserted into the growing chains.