Claim Missing Document
Check
Articles

Found 11 Documents
Search

PENGEMBANGAN ANALISIS GEROMBOL BERHIRARKI DENGAN KETERGANTUNGAN SPASIAL PADA INDIKATOR MAKRO SOSIAL EKONOMI DI KABUPATEN/KOTA PROVINSI SULAWESI TENGAH Iman Setiawan; Nur’eni Nur’eni; Sritasarwati Putran
Indonesian Journal of Statistics and Applications Vol 4 No 1 (2020)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (397.475 KB) | DOI: 10.29244/ijsa.v4i1.582

Abstract

This paper develops how the hierarchical clustering analysis uses multivariate variables with spatial dependence on macro social-economic indicator data in Regency/City Central Sulawesi Province. Macro social-economic indicator data used in this paper are the number of criminal cases, per capita expenditure, population density, and Human Development Index of Regency/City of Central Sulawesi Province in 2018. To answer this question, Macro social-economic indicator data was reduced to a new variable using principal component analysis. The new variable was used to identify spatial dependency using the Moran index test. Spatial weight, that meets the Moran index test on the alternative hypothesis (there is a spatial dependency between locations), was used as the spatial dependency distance. Cluster analysis using two distance including variable and spatial dependency distance. The results showed that neighboring Regency/City are in the same cluster (spatial dependency occasion). So that there are five clusters Regency/City in Central Sulawesi Province.
Intervention Model Analysis The Number of Domestic Passengers at Sultan Hasanuddin Airports Andi Ferosita Sustrisno; Rais; Iman Setiawan
Parameter: Journal of Statistics Vol. 1 No. 1 (2021)
Publisher : Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (384.479 KB) | DOI: 10.22487/27765660.2021.v1.i1.15436

Abstract

Domestic passengers are objects whose travel / flight transportation services only cover the domestic area. The increase or decrease in the number of domestic passengers is usually influenced by the occurrence of intervention. This research uses the intervention analysis. Intervention analysis is the time series analysis to model data that is determined by the presence of an intervention. Intervention analysis is one of the time series analysis to model data that are affected by the occurrence of a particular event in a short period of time, such as accidents, natural disasters, and promotions. This research is used to establish intervention model with pulse function of passengers of domestic Sultan Hasanuddin Airport. The result of the research were obtained the model Seasonal ARIMA .There were 6 intervention times during 2006 - 2018, by entering the intervention order b = 0, s = 0, and r = 1 based on the smallest AIC value is -303,66 with MAPE value is 6,1023.
Automatic Plant Watering System for Local Red Onion Palu using Arduino Iman Setiawan; Junaidi Junaidi; Fadjryani Fadjryani; Fika Reski Amaliah
JOIN (Jurnal Online Informatika) Vol 7 No 1 (2022)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v7i1.813

Abstract

Central Sulawesi Province in Indonesia has great potential for horticultural commodities, namely local red onion Palu. In the current climate change, local farmers are still watering plants in the conventional way. The automatic watering system simplifies the work of local farmers. This device uses a soil moisture sensor as a soil moisture detector and Arduino as a program brain. This study aims to determine the position of soil moisture sensor, the optimal length of watering time and analyze the quality of data stored. The experiment was carried out using a Completely Randomized Design (CRD). The position of the soil moisture sensor was analyzed by Profile Analysis. The optimal length of watering time was determined by Analysis of Variance (ANOVA) and Least Significant Difference (LSD). The quality of data stored was determined by a number of missing values and frequency of watering. The results showed that in soil planting media the position of soil moisture sensor had no significant effect, while in others planting media (water and combination of water and soil) the position of the sensor had a significant effect. The optimal watering time was 3 seconds. The stored data has low quality in terms of missing values and lack of consistency.
Tranformasi Calanthe Triplicata untuk Branding Unik Motif Batik Sulawesi Tengah Ikram Ikram; Abdi; N Mutmainna; J Khasmawati; D Wahyuli; I W Sudarsana; Junaidi; Fadjriyani; I Setiawan; S Hendra
JURNAL ILMIAH MATEMATIKA DAN TERAPAN Vol. 19 No. 2 (2022)
Publisher : Program Studi Matematika, Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/2540766X.2022.v19.i2.16156

Abstract

Batik merupakan salah satu warisan seni budaya bangsa Indonesia yang ada untuk terus dipertahankan dan dikembangkan. Upaya ini dilakukan dengan memperbanyak motif--motif baru yang salah satunya dengan mengekplorasi keunikan alam yang ada. Alam Sulawesi Tengah dengan keunikan flora-nya, yaitu bunga anggrek dengan nama Latin Calanthe Triplicata merupakan jenis tanaman endemic yang diekplorasi guna mendapatkan motif baru untuk menambah keragaman Batik di Indonesia. Etnomatematika merupakan salah satu cabang ilmu matematika untuk membahas hubungan antara matematika dan budaya yang dapat digunakan untuk membentuk pola Batik, khususnya bentuk fraktal. Bentuk fraktal adalah suatu objek yang tampak memiliki kemiripan diri yang simetris satu sama lain jika dilihat pada skala tertentu dan merupakan bagian terkecil dari keseluruhan struktur objek. Di dalam penelitian ini dilakukan pembuatan bentuk fraktal dengan mentransformasi tanaman anggrek sebagai branding unik untuk motif batik Sulawesi Tengah. Adapun hasil yang diperoleh berupa metif-motif baru yang unik, menarik dan elegan yang kita sebut dengan motif Sambuang, Rekang, Kecrek dan Angkan.
Internet of Things (IoT) for Soil Moisture Detection Using Time Series Model Iman Setiawan; Junaidi Junaidi; Fadjryani Fadjryani; Fika Reski Amaliah
JOIN (Jurnal Online Informatika) Vol 7 No 2 (2022)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v7i2.951

Abstract

Technology in agriculture has been widely and massively applied. One of them is automation technology and the use of big data through the Internet of Things (IoT). The use of IoT allows a process to run automatically without human intervention. Extreme weather changes and narrow land use are one of the main problems in agriculture. The development of IoT devices has been widely developed regarding this subject. One of them is a soil moisture detection system. This study aims to build an IoT soil moisture detection system. The system will use a sensor as input which is then processed in a microcontroller device and the prediction results are sent to the IoT cloud platform. Prediction results are obtained using a time series model and then its performance is evaluated using RMSE. This model was chosen because the structure of the observed soil moisture data is based on time. The results of this study indicate that the soil moisture IoT system can work well. This is supported by the results of the prediction evaluation value of the RMSE = 1.175682x10-5 model which is very small.
Pemodelan Topik pada Judul Berita Online Detikcom Menggunakan Latent Dirichlet Allocation Yayang Matira; Junaidi; Iman Setiawan
ESTIMASI: Journal of Statistics and Its Application Vol. 4, No. 1, Januari, 2023 : Estimasi
Publisher : Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/ejsa.vi.24843

Abstract

Detikcom is a very popular news portal today. The news on the portal continues to grow time to time, causing the existing news data to pile up. As a result, this is necessary to utilize this large amount of data. One of the ways that can be used is to extract topics from news text data through topic modeling using the Latent dirichlet allocation (LDA) method. This method is very popular because it can perform analysis on very large documents. This research aims to find certain patterns in a document by generating several different topics so that it does not specifically divide documents into a particular topic. This research has three topics obtained, with a coherence score is 0,7586. The first topic discusses conflicts and crises within a country, the second topic discusses issues related to humanitarian, and the third topic discusses the issues of corruption committed by state officials.
Peramalan Curah Hujan di Kota Makassar dengan Menggunakan Metode SARIMAX Nur Hazimah Latief; Nur’eni Nur’eni; Iman Setiawan
Statistika Vol. 22 No. 1 (2022): Statistika
Publisher : Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/statistika.v22i1.990

Abstract

ABSTRAK Peramalan adalah memprediksi kejadian yang akan datang dengan melihat data dari masa lalu. Salah satu metode peramalan yaitu ARIMA yang dibedakan menjadi 2 yaitu ARIMA non-musiman dan ARIMA musiman. Penelitian ini menggunakan metode ARIMA musiman yang dikembangkan untuk mengatasi keterbatasan pada metode tersebut yang dikenal dengan SARIMAX (Seasonal Autoregressive Integrated Moving Average with Exogeneous Input) dengan menganalisis curah hujan di Kota Makassar dengan variabel eksogen yaitu suhu udara. Hasil yang dipakai dari penelitian ini adalah mendapatkan model SARIMAX yaitu SARIMAX (2,0,2)(1,0,0)12 dengan persamaan Zt = 0,5552Zt-12 - 0,2097Zt-1 + (0,2097)(0,5552)Zt-13 + 0,6135Zt-2 - (0,6135)(0,5552)Zt-14 + et - 0,614et-2 – 0,3859et-2 – 194,883X1t dengan hasil peramalan curah hujan di Kota Makassar Januari sampai Desember 2021 yaitu 868 mm3, 985 mm3, 848 mm3, 848 mm3, 731 mm3, 829 mm3, 868 mm3, 829 mm3, 712 mm3, 614 mm3, 790 mm3 dan 926 mm3 dimana terjadi kenaikan curah hujan tahun sebelumnya dengan curah hujan terendah terjadi pada bulan Oktober 2021 sebesar 614 mm3 dan terbanyak terjadi pada bulan Februari 2021 sebesar 985 mm3 dengan nilai MAPE sebesar 17,75%. ABSTRACT Forecasting is predicting data events from the future by looking at data from the past. One of the forecasting methods is ARIMA which is divided into 2, namely non-seasonal ARIMA and seasonal ARIMA. This study uses the seasonal ARIMA method which was developed to overcome the limitations of the method known as SARIMAX (Seasonal Autoregressive Integrated Moving Average with Exogeneous Input) by analyzing rainfall in Makassar City with an exogenous variable, namely air temperature. The purpose of this study is to obtain the results of forecasting rainfall in 2021. The results obtained are the SARIMAX model (2.0,2)(1,0,0)12 with the lowest rainfall forecasting results in Makassar City occurring in October 2021 at 614 mm3 and the most occurred in February 2021 at985 mm3 with a MAPE value of 17.75%.
EXPERT SYSTEM DESIGN TO DIAGNOSE PESTS AND DISEASES ON LOCAL RED ONION PALU USING BAYESIAN METHOD Junaidi Junaidi; Fadjryani Fadjryani; Iman Setiawan; Mohammad Batara; Syaiful Hendra; Nurmasita Ismail
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 17 No 1 (2023): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (514.572 KB) | DOI: 10.30598/barekengvol17iss1pp0371-0382

Abstract

Bayesian is a method that can be used to overcome the uncertainty of a situation or data. The information obtained must be continuously updated so that it can foster trust as a result of the uncertainty of those conditions. In this study, the application of the Bayesian method to detect early symptoms of diseases on local red onion Palu plants based on the symptoms that appear will be carried out. Information about pests and diseases that attack local red onion Palu is needed to help farmers. As a result, they can deal with attacked diseases quickly and precisely. This is crucial conducted by considering that this plant is one of the mainstay commodities for farmers in Central Sulawesi Province whose production must continue to be increased. Pests and diseases can be diagnosed through visible symptoms.The sample is local red onion Palu that affected by pests and disesases which planted in the AIAT of Central Sulawesi by experiment. As a result, through these symptoms an expert system can then be created to do a diagnosis. An expert system is a system that seeks to adopt human knowledge to a computer that is built to solve problems like an expert. The created expert system to diagnose diseases uses the Bayesian method to calculate the probability of an event occurring based on the obtained results from observations and experts. An expert system for diagnosis of pests and diseases is built on a web-based basis. This expert system has features and functions including the diagnosis of pests and diseases of the observed plants, viewing the results of the diagnosis and printing the results of the diagnosis. In addition, users can view information on pests and other diseases that attack plants. From the results of system testing that conducted by experts, this shows that the expert system is feasible to use to diagnose local red onion Palu plants which affected by pests and diseases with an accuracy point that has the largest percentage value.
SOSIALISASI SISTEM WEB UNTUK MENDIAGNOSA HAMA DAN PENYAKIT TANAMAN BAWANG MERAH LOKAL PALU PADA KELOMPOK PETANI BINAAN Junaidi Junaidi; Iman Setiawan; Mohammad Fajri; Hajra Rasmita Ngemba; Nurpati Nurpati
DedikasiMU : Journal of Community Service Vol 5 No 3 (2023): DedikasiMU September
Publisher : Universitas Muhammadiyah Gresik

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30587/dedikasimu.v5i3.6268

Abstract

Sistem guna mendiagnosa gejala awal serangan hama dan penyakit tanaman yang berbasis Web bagi petani bawang merah lokal Palu perlu disosialisasikan. Hal ini dilakukkan agar petani dapat dengan cepat mengetahui jenis hama dan penyakit apa yang menyerang tanaman tersebut. Sehingga hal ini dapat membantu para petani dengan cepat untuk memberikan penanganan dalam mengatasi serangan hama dan penyakit tersebut. Kemudahan dalam mengakses web yang berbasis pengambilan keputusan berdasarkan metode Bayesain dapat membantu para petani sehingga dapat lebih baik, ideal dan bijaksana dalam menentukan aktivitas prioritas yang akan dilakukan guna mendukung produksi tanaman bawang merah lokal Palu. Dengan demikian, tujuan dari kegiatan ini adalah membantu petani bawang merah lokal Palu sebagai mitra guna mengetahui dengan cepat gejala awal serangan hama dan penyakit pada tanaman bawang merah lokal Palu yang berbasis web. Hal ini berdampak pada produksi bawang yang dihasilkan lebih baik dan berkualitas. Adapun kegiatan sosialisasi yang dilakukan adalah dengan pemberian materi, pelatihan system web serta diskusi dengan mitra. Sosialisasi yang telah dilakukan sangat bermanfaat bagi para petani bawang merah untuk mengetahui dengan cepat dan tepat dalam mendeteksi jenis hama dan penyakit yang menyerang bawang merah melalui sistem web. Hal ini terbukti dengan ketercapaian hasil yang ditargetkan oleh tim pengabdi berupa pengaplikasian secara langsung penggunaan sistem web dengan baik. Kegiatan sosialisasi ini sangat menarik karena para petani sangat antusias mengikuti pelatihan web secara mandiri. Melalui kegiatan pengabdian ini, petani dapat memahami konsep dalam menentukan hama dan penyakit serta penanganannya.
Re-Calibration of Model-Based Capacitive Sensor for IoT Soil Moisture Measurements Iman Setiawan; Mohammad Dahlan Th. Musa; Saskia Amalia Putri
Journal of Applied Informatics and Computing Vol 7 No 2 (2023): December 2023
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v7i2.6809

Abstract

Low-cost automatic irrigation systems require quality calibrated soil moisture sensors. The sensor is an indirect method of soil moisture measurement. The sensor works based on the change in the dielectric constant. So, it requires to be calibrated in terms of the soil water content. Polynomial and linear models are frequently used to calibrate soil moisture sensor data in the gravimetric test method. However, computational effort is required. This study aims to obtain a sensor calibration application that can provide the best model of the available models for model-based capacitive soil moisture sensor. This research was conducted using primary data from gravimetric test experiment on Internet of things (IoT) based soil moisture sensor. Web-based re-calibration application produced best model based on adjusted R Squared. Finally, model-based capacitive soil moisture sensor set up using best model coefficient. The results show that the web-based re-calibration application can provide the best model for model-based capacitive soil moisture sensor. Based on gravimetric test experiments and web applications, the best model is a polynomial regression model order 3 with 0.945 adjusted R Squared. The model predicted value for soil moisture is in the range 0 – 1.2 for raw sensor data values of 100 – 530. When the model coefficient configured in capacitive soil moisture sensor and Blynk application, soil moisture measurement can be done via mobile phone in real time.