Claim Missing Document
Check
Articles

Found 5 Documents
Search

Identifikasi Citra berdasarkan Gigitan Ular menggunakan Metode Active Contour Model dan Support Vector Machine Dewangga, Dhiya Ulhaq; Adiwijaya, Adiwijaya; Utama, Dody Qori
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 3, No 4 (2019): Oktober 2019
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v3i4.1409

Abstract

Tropical countries have a warm and humid climate are suitable habitat for the lives of reptile animals, especially snakes. Snakes are a type of reptile animal that is widely found in tropical countries, especially in Indonesia. The worst thing that happens when meeting a snake is the bite of snake. If the bite comes from a venomous snake it can cause a more serious problem than the bite from non-venomous snake is, which can cause paralysis, disability, and the worst is death. According to the WHO (World Health Organization) an estimated 5.4 million people are bitten by snakes each year with almost 2.7 million being bitten by venomous snakes and get affected symptoms. Around 81,000 to 138,000 people die every year. This research uses image processing technic to make the identification system of snake bites whether venomous or non-venomous. The method used in this system is Active Contour Model and Support Vector Machine. By using these methods, the highest accuracy is obtained in the best of SVM kernel, on RBF kernel and Polynomial kernel.
Classification of Electrocardiogram Signals using Principal Component Analysis and Levenberg Marquardt Backpropagation for Detection Ventricular Tachyarrhythmia Astrima Manik; Adiwijaya Adiwijaya; Dody Qori Utama
Journal of Data Science and Its Applications Vol 2 No 1 (2019): Journal of Data Science and Its Applications
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/jdsa.2019.2.12

Abstract

Abstract Ventricular Tachyarrhythmia (VT) are the primary arrhythmias which are cause of sudden death. For someone who already has symptoms of VT should immediately perform an examination of one of them by using an electrocardiogram (ECG). An electrocardiogram is a recording of the heart's electrical results in a waveform. However, limited ability in analysis and diagnosis of ECG reading is still difficult to do. Therefore, the classification of ECG signals is needed to detect a person, especially those with VT or not. In this research focuses on the classification of VT heartbeats from ECG signals by using median filter method in preprocessing, Principal Component Analysis (PCA) as feature extraction and modified Backpropagation (MBP) as classification. This research used machine learning method that is a neural network with backpropagation modification that is Levenberg Marquardt to speed up network training process. The best VT detection performance results were based on the average accuracy of the overall scheme of 91.67% with the best parameters that principal component=10 and 20, hidden neuron=4, and µ value=0.001 as well training time 1 seconds with a comparison of train data and test data that is 80:20 percent. Keywords: Electrocardiogram, Levenberg Marquardt Backpropagation, Median filter, Principal Component Analysis, and Ventricular Tachyarrhythmia
Snakebite Classification Using Active Contour Model and K Nearest Neighbor Chiara Janetra Cakravania; Dody Qori Utama
Journal of Data Science and Its Applications Vol 3 No 1 (2020): Journal of Data Science and Its Applications
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/jdsa.2020.3.38

Abstract

Indonesia is categorized as one of tropical countries that have a high risk of snakebites. This surely may endanger rural citizens’ lives for there are still many snakes found in rural areas. The main cause of death from snakebite cases is by reason of the venom squirted from snake’s canine teeth. Others causes are errors in identifying the bite marks visually. There are anatomical differences between puncture wounds from venomous and non-venomous snakes. This study established a snakebite identification system using Active Contour Model and K Nearest Neighbor (KNN) methods. By performing some tests related to the parameters used in the method, the highest accuracy value on K Nearest Neighbor method was obtained by using the correlation distance rule, the K value = 3, without using distance weight in the classification system.
Klasifikasi Gambar Gigitan Ular Menggunakan Regionprops dan Algoritma Decision Tree Yoga Widi Pamungkas; Adiwijaya Adiwijaya; Dody Qori Utama
Jurnal Sistem Komputer dan Informatika (JSON) Vol 1, No 2 (2020): Januari 2020
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (408.081 KB) | DOI: 10.30865/json.v1i2.1789

Abstract

Indonesia has a high biodiversity of snakes. Snake species that exist throughout Indonesia, consisting of venomous and non-venomous snakes. One of the dangers that can be posed by snakes is the bite of several types of deadly snakes. Snake bite cases recorded in Indonesia are quite high with not a few fatalities. Most of the deaths caused by snakebite occur due to errors in the handling procedure for the bite wound. This problem can be overcome one of them if we know how to classify snake bite wounds, whether venomous or non-venomous. In this study, a classification system for snake bite wound image was built using Regionprops feature extraction and Decision Tree algorithm. Snake bite images are classified as either venomous or non-venomous without knowing the kind of the snake. In Regionprops several features are used to help the process of feature extraction, including the number of centroids, area, distance, and eccentricity. Evaluation of the model that was built was found that the parameters of the number of centroids and the distance between centroids had the most significant influence in helping the classification of images of snakebite wounds with an accuracy of 97.14%, precision 92.85%, recall 91.42%, and F1 score 92.06%.
KLASIFIKASI GIGITAN ULAR MENGGUNAKAN LOCAL BINARY PATTERN DAN NAÏVE BAYES Fathur Rohman; Adiwijaya Adiwijaya; Dody Qori Utama
JURNAL TEKNOLOGIA Vol 2 No 1 (2019): Jurnal Teknologia
Publisher : Aliansi Perguruan Tinggi Badan Usaha Milik Negara (APERTI BUMN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (5494.817 KB)

Abstract

Cases of poisonous snake bites around the world are estimated to occur around 421,000 cases and 20,000 of them die every year. Identifying snake bite marks on victims will greatly help the medical team in handling victims of snake bites and will avoid fatal errors such as the death of the victim. This research will try to create a system that can classify snake bites images. The system has been built using the extraction method Local Binary Pattern (LBP) and Naive Bayes. Parameter r is a radius, while paramter P is the number of neighbor . The best result of this system has accuracy 83.33%, precision 1.00, recall 0.75, and F1 Score 0.86,parameter that used are r = 1 with P = 8 and r = 3 with P = 16. The dataset used has 20 data, the data divided into 14 training data and 6 testing data.