Claim Missing Document
Check
Articles

Found 18 Documents
Search

PENGATUR KECEPATAN MOTOR DC DENGAN SENSOR SUHU BERBASIS MIKROKONTROLER ATMEGA16 Prawiroredjo, Kiki; Rahardjo TS, Kuat; Stevanus, Stevanus
Jurnal Teknik Elektro Vol 9, No 1 (2009)
Publisher : Jurnal Teknik Elektro

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

A telecommunication cabinet usually uses a Direct Current fan with a Direct Current motor (DC motor) to make the cabinet temperature does not exceed the temperature that is allowed. Using a DC motor has weaknesses because it always rotates in full speed although the temperature in the cabinet gets down already. It causes inefficiency of the power consumption and the DC motor’s lifetime is not long enough.The prototype of DC motor speed controller controls the speed of a DC motor with the temperature environment as its reference. This circuit is built by a temperature sensor LM35, a microcontroller ATmega16 as the processor that analizes the input from the temperature sensor and relays. This prototype is equipped with a Liquid Crystal Display (LCD) to display the temperature of the cabinet and the DC motor speed. After the prototype is assembled and tested, it is known that the circuit controls a DC motor speed according to the changes of the temperature that has been determined by the software program. The DC motor stops rotating if the temperature sensor senses the temperature below the minimum temperature level.Keywords: DC motor, temperature sensor, LCD, microcontroller
DASAR-DASAR VOICE OVER INTERNET PROTOKOL Prawiroredjo, Kiki
Jurnal Teknik Elektro Vol 2, No 1 (2002)
Publisher : Jurnal Teknik Elektro

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Voice over IP (VoIP) technology enables the real time transmission of voice signals aspacketized data over IP networks that employ the Transmission Control Protocol (TCP),Real Time Transport Protocol (RTP), User Datagram Protocol (UDP), and InternetProtocol (IP) suite. In VoIP systems, analog voice signals are digitized and transmitted as astream of packets over a digital data network. IP networks allow each packet toindependently find the most efficient path to the intended destination, thereby best using thenetwork resources at any given instant. The packets associated with a single source may thustake many different paths to the destination in traversing the network, arriving with differentend to end delays, arriving out of sequence, or possibly not arriving at all. At the destination,however, the packets are reassembled and converted back into the original voicesignal.VoIP technology insures proper reconstruction of the voice signals, compensating forechoes made audible due to the end to end delay, for jitter and for dropped packets.Variation among VoIP products include the algorithms and implementations used to supportdynamic bandwidth allocation, packet loss recovery, adaptive echo cancellation and speechprocessing to deliver voice quality as high as possible.Keywords: Voice over IP (VoIP), gateway, Digital Signal Processing (DSP)
PENGATUR KETINGGIAN AIR OTOMATIS Prawiroredjo, Kiki; Susantio, Ignatius Melvin
Jurnal Teknik Elektro Vol 9, No 2 (2010)
Publisher : Jurnal Teknik Elektro

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The Automatic Water Level Control is a prototype circuit that controls the availability of water in a tank. The water tank has five water levels to control the pump work. The water level control system consists of two water containers, one for the water source container and the other for the water reservoir and two water pumps. The circuit consists of an infrared system, two relays to activate the water pumps and a 2x16 Liquid sensor to detect the water level, a microcontroller Atmega 8535(L) to control all the circuit Crystal Display (LCD) to display the water level in the tank reservoir and the pump condition. After the water level control circuit has been built and tested, it is known that at the minimum level position that is 30 cm between sensor and the float, the output voltage of the infrared sensor is 0,85 volt and the microcontroller will turn on both the water pumps. At the maximum level position that is 11.5 cm between sensor and the float, the output voltage of the infrared sensor is 2,17 volt and the microcontroller will turn off both of the water pumps. Keywords: Water level control, infrared sensor, Microcontroller, LCD
ROBOT PENGANTAR BARANG OTOMATIS BERBASIS MIKROKONTROLER AVR ATMEGA16 Prawiroredjo, Kiki; Iriyanto, Iriyanto
Jurnal Teknik Elektro Vol 8, No 1 (2008)
Publisher : Jurnal Teknik Elektro

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Automatic Object Delivery Robot Based on AVR ATMega16 Microcontroller is a robot thatdelivers goods to a certain location and move back to its initial position automatically, andavoids obstacles to reach any location. This Robot is built by using two stepper motors formoving forward and backward, and SHARP GP2D12 infra red sensor connectedmechanically to the servo motor in order to turn the sensor around 45 degrees to detect theexistence of any obstacle at a certain distance around the robot. Transmitter in the sensorwill transmit infra red light and if there are obstacles at a distance of 10 to 36.7 cm, the infrared light will be reflected to the sensor. AVR ATMega16 Microcontroller as the processorwill analyze the area of the obstacles at certain distance and move the robot to the areawhere there is no obstacle. After being assembled and tested, this robot can go to itsdestination and back to its initial position as programmed. There are errors as the robotreaches its destination. For example, the destination coordinate is x=2 and y=6 becomesx=1,95 and y=6, and the initial position coordinate is x=2 and y=0 becomes x=1,7 andy=0 when tested without obstacles, and the coordinate becomes x=1,4 and y=0 when testedwith obstacles. These errors occur due to inaccuracy of stepper motor rotation.Keywords: Robot, Microcontroller, stepper motor, servo motor, infrared sensor.
DETEKTOR JARAK DENGAN SENSOR ULTRASONIK BERBASIS MIKROKONTROLER Prawiroredjo, Kiki; Asteria, Nyssa
Jurnal Teknik Elektro Vol 7, No 2 (2008)
Publisher : Jurnal Teknik Elektro

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

A Distance Detector is a circuit that is built using ultrasonic sensor to detect objects aroundone`s car and AT89S52 microcontroller as the processor. An Ultrasonic sensor will detectobjects around the car. The sensor’s transmitter will transmit ultrasonic waves. If theultrasonic waves bounce back to the receiver, it means that there is an object around the car.Microcontroller will count the time needed to receive the ultrasonic waves and determine thedistance between the object and the car. The distance can be read from the Liquid CrystalDisplay (LCD) or Light Emitting Diode (LED) panel that is placed in front of the car driver.After being assembled and tested, this device works properly. This device can detect anobject up to the distance of 2 meters from the sensor. The deviation between the real distanceand the calculated one ranges from 0.82% to 34.40%. the longer the distance, the smallerthe deviation.Keywords: ultrasonic sensor, microcontroller, distance, LCD, LED
SIMULASI FILTER SALLEN KEY DENGAN SOFTWARE PSPICE Prawiroredjo, Kiki
Jurnal Teknik Elektro Vol 6, No 2 (2007)
Publisher : Jurnal Teknik Elektro

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

A Sallen–Key filter is a type of active filter, particularly valued for its simplicity. The circuitproduces a 2-pole (12 dB/octave) lowpass or highpass response using two resistors, twocapacitors and a buffer amplifier or operational amplifier. By varying the gain of theamplifier the filter will have a certain type of frequency response such as Bessel, Butterworthor Chebyshev. Higher-order filters can be obtained by cascading two or more stages. Thisfilter topology is also known as a voltage controlled voltage source (VCVS) filter. The opampprovides buffering between filter stages, so that each stage can be designedindependently. PSpice software can be used to simulate the filter circuits and the frequencyresponse can be analyzed before the circuits are built. Designers can change the frequencyresponse easily by changing the values of the components in the filter design by PSpicesoftware. The results of the simulation show that the Bessel response has the lowest outputvoltage and the lowest roll-off, Butterworth frequency response has higher output voltagethan Bessel and as the most stable one but Chebyshev response has the highest outputvoltage and the highest roll-off but not stable.Keywords: Sallen-Key filter, PSpice software, frequency response, lowpass filter, highpassfilter, Operational Amplifier, Bessel, Butterworth, Chebyshev.
Model Sistem Pengendalian Suhu dan Kelembaban Ruangan Produksi Obat Berbasis NodeMCU ESP32 Khalifa, Arfend Atma Maulana; Prawiroredjo, Kiki
Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Vol 6 No 1 (2022)
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/eltikom.v6i1.415

Abstract

Proses produksi dalam industri farmasi harus mengikuti pedoman yang tertera dalam Cara Pembuatan Obat yang Baik (CPOB). Proses produksi harus dihentikan bila suhu dan kelembaban ruangan produksi tidak memenuhi nilai yang sudah ditentukan dan harus membuat laporan tentang terhentinya produksi. Penelitian ini mengusulkan sebuah model sistem yang dapat mengatur suhu dan kelembaban udara secara otomatis berbasis NodeMCU ESP32 yang dapat memberikan informasi kepada teknisi secara terus menerus. Melalui Web Server phpMyAdmin data suhu dan kelembaban dapat disimpan serta dimonitor dari jarak jauh menggunakan smartphone atau komputer dengan membuka web. Sensor DHT 11 digunakan untuk mendeteksi nilai suhu dan kelembaban dan untuk mengontrolnya digunakan kipas Peltier dan dehumidifier. Dalam penelitian ini dilakukan pengendalian ruangan produksi obat yang memiliki ketentuan kelas C dan D sesuai ketentuan pada CPOB yaitu untuk jenis obat cair di ruang steril. Ruangan produksi obat kelas C memiliki range suhu dari 16ËšC sampai dengan 25ËšC dan range kelembaban 45% sampai dengan 55%, sedangkan ruangan produksi obat kelas D memiliki range suhu dari 20ËšC sampai dengan 27ËšC dan range kelembaban dari 40% sampai dengan 60%. Dari hasil pengujian yang dilakukan dapat diketahui bahwa sistem dapat mengendalikan suhu dan kelembaban ruangan secara otomatis bila ada gangguan sekaligus mencatat data waktu kejadian gangguan untuk melengkapi laporan selama proses produksi obat.
Prototipe Alat Monitoring Oksidasi Oli pada Mesin Hidrolik Kiki Prawiroredjo; Ikhsan Saputra; Henry Candra
Setrum : Sistem Kendali-Tenaga-elektronika-telekomunikasi-komputer Vol 10, No 1 (2021): Edisi Juni 2021
Publisher : Fakultas Teknik Elektro - Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36055/setrum.v10i1.11000

Abstract

Changing hydraulic engine oil regularly over a period of time is considered irrelevant because the oil quality today is better than the oil quality in the past. The process of monitoring the quality of hydraulic engine oil with a real-time system provides an advantage to replace the engine hydraulic oil in the right time. Oxidation is the main factor affecting oil degradation the most. This research proposes a system that monitors the condition of hydraulic engine oil and monitors its oxidation level as a preliminary research to determine the oil replacement time. The system refers to T. Bley's research that detects oil degradation based on infrared emitters and thermopile. The system uses LabVIEW as a Graphical User Interface (GUI). Four types of oil samples are used, namely new oil, oil that has been used for 6 months, 9 months, and 1 year. The method of testing and demonstrating the tool is carried out by pumping oil through the sensor which will read the signal attenuation caused by oil oxidation. The results of the test show that the longer the oil is used, the higher the level of oxidation and it can be seen from the level voltages generated by the sensor’s output is getting high. Keywords: Infrared, thermopile, oxidationPenggantian oli mesin hidrolik secara rutin selama kurun waktu tertentu dianggap sudah tidak relevan lagi karena kualitas oli pada dewasa ini sudah lebih baik dibandingkan dengan kualitas oli pada waktu yang lalu. Proses monitoring kualitas oli mesin hidrolik dengan sistem waktu nyata akan mwadahikan keuntungan karena waktu penggantian oli akan tepat sasaran. Oksidasi merupakan faktor utama yang paling mempengaruhi degradasi oli. Pada penelitian ini diajukan sebuah sistem yang dapat memonitor kondisi oli mesin hidrolik dan memantau tingkat oksidasinya sebagai penelitian awal untuk menentukan waktu penggantian oli pada waktu yang tepat. Sistem mengacu pada penelitian T. Bley dalam mendeteksi degradasi oli berbasis pemancar inframerah dan thermopile. Sistem  menggunakan LabVIEW sebagai Graphical User Interface (GUI). Pada pengujian digunakan 4 jenis sampel oli yaitu oli baru, oli yang sudah digunakan selama 6 bulan, 9 bulan, dan 1 tahun. Metode pengujian dan peragaan alat dilakukan dengan memompa oli melewati sensor yang akan membaca peredaman sinyal yang disebabkan oleh oksidasi oli. Hasil dari pengujian menunjukkan bahwa semakin lama oli digunakan semakin tinggi tingkat oksidasinya terlihat dari level tinggi tegangan yang dihasilkan oleh keluaran sensor yang semakin tinggi. Kata kunci: Inframerah, thermopile, oksidasi
Model Sistem Monitoring Serta Kendali Otomatis Suhu dan Kelembaban Ruangan Pada Budidaya Jamur Tiram Putih Berbasis Internet Of Things Kiki Prawiroredjo; Aldi Maulana; Samuel H Tirtamihardja; Gunawan Tjahjadi
Setrum : Sistem Kendali-Tenaga-elektronika-telekomunikasi-komputer Vol 9, No 2 (2020): Edisi Desember 2020
Publisher : Fakultas Teknik Elektro - Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36055/setrum.v9i2.9019

Abstract

White oyster mushroom is a very superior food commodity. However, the problem faced is that the temperature and humidity in the lowlands are very unstable and tend to be hot. To get optimal results, oyster mushroom growth requires room temperatures in the range of 26 to 30 ˚C, room humidity in the range 80% to 90% RH and soil humidity in the range 80 to 100% RH. To maintain and monitor this condition, we need a Monitoring System and Room Temperature and Humidity Automatic Control in white Oyster Mushroom Cultivation Based on the Internet of Things. The system designed regulates temperature, room humidity and soil humidity in real time and displays the data on a LCD in the mushroom cultivation room and send the data to a laptop or a smartphone of the cultivator. A DHT-11 sensor is used to detect room temperature and air humidity, and a soil moisture sensor is used with a probe that is planted into the soil to detect the soil moisture in the cultivation room. Sprayer or mist maker is used as an air conditioner, lamp and fan are used as a temperature and humidity stabilizer for the room and soil. An Arduino Uno with ATmega328P microcontroller is used as a component that controls the whole system. From the test results it is known that the system works properly to maintain the temperature in the range 26˚ - 30˚ C and humidity in the range 80% - 90% RH.Jamur tiram putih merupakan salah satu komoditi pangan yang sangat unggul. Permasalahan yang dihadapi adalah suhu dan kelembaban di dataran rendah sangat tidak stabil dan cenderung panas. Untuk mendapatkan hasil yang optimal pertumbuhan jamur tiram memerlukan suhu pada range 26˚ - 30˚ C, kelembaban udara berada pada range 80% - 90% RH dan kelembaban tanah pada range 80 – 100% RH. Untuk menjaga dan memonitor keadaan tersebut dibutuhkan sebuah Sistem Monitoring Serta Kendali Otomatis Suhu dan Kelembaban Ruangan pada Budidaya Jamur Tiram Putih Berbasis Internet of Things. Sistem yang dibuat dapat mengatur suhu, kelembaban ruangan dan kelembaban tanah secara real time dan menampilkan data tersebut pada sebuah LCD di ruang budidaya jamur dan pada laptop atau smartphone pembudidaya. Sebagai pendeteksi suhu dan kelembaban ruangan digunakan sensor DHT-11, sedangkan untuk mendeteksi kelembaban tanah digunakan sensor kelembaban tanah. Sprayer digunakan sebagai pendingin ruangan, lampu dan kipas angin digunakan sebagai penstabil suhu dan kelembaban ruangan dan tanah. Sebagai komponen pengatur kerja sistem secara keseluruhan digunakan Arduino Uno dengan mikrokontroler ATmega328P. Dari hasil pengujian diketahui bahwa sistem dapat berfungsi dengan baik menjaga suhu di daerah range 26˚ - 30˚ C, kelembaban ruangan dalam range 80% - 90% RH. 
Prototipe Elektrokardiograf Tiga Lead Berbasis Komputer Jinjing Aulia Eka Putra; Kiki Prawiroredjo; Henry Candra; Engelin Shintadewi Julian; Gunawan Tjahjadi
TELKA - Jurnal Telekomunikasi, Elektronika, Komputasi dan Kontrol Vol 7, No 2 (2021): TELKA
Publisher : Jurusan Teknik Elektro UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/telka.v7n2.144-160

Abstract

Penyakit jantung masih menjadi ancaman di Indonesia, menurut Kementerian Kesehatan, pada tahun 2014 penyakit jantung koroner (PJK) merupakan penyebab kematian tertinggi setelah stroke. Persentase terbesar penyakit kardiovaskuler adalah pada gangguan irama jantung. Instrumentasi medik elektrokardiograf (EKG) digunakan untuk mendeteksi sinyal biopotensial yang dihasilkan jantung sehingga dapat didiagnosis oleh dokter spesialis jantung. Penelitian ini mengusulkan sebuah prototipe sistem rekam jantung EKG yang ekonomis, dengan memanfaatkan suatu program aplikasi menggunakan bahasa pemrograman C Sharp. Sistem menggunakan 3 buah surface electrodes, modul AD8232, dan modul Arduino Uno sebagai komponen pembentuk instrument elektrokardiograf. Surface electrodes berfungsi menangkap sinyal aktivitas listrik pada jantung yang dikondisikan oleh modul AD8232 dan diubah menjadi sinyal digital pada  Arduino.  Tampilan pada layar komputer memperlihatkan jumlah denyut jantung per menit (BPM) dan grafik gelombang EKG yang dapat dibaca nilai amplitudo dan lebar waktu gelombangnya. Berdasarkan hasil perbandingan pengujian antara prototype EKG terhadap Portable Easy ECG Monitor PC-08B didapati kesalahan rata-rata parameter gelombang jantung yaitu pada denyut jantung per menit 1,19%, pada interval R-R 2.44%, pada interval P-R 2,05 %, pada interval Q-T 1,16 %, pada interval waktu gelombang P 2,58 %, pada interval waktu gelombang QRS 2,07 %, pada interval waktu gelombang T 3,26 %, pada nilai amplitudo QRS 3,40 %, pada nilai amplitudo gelombang P  4 %, dan pada nilai amplitudo gelombang T 4,10 %. Heart disease was a threat in Indonesia, according to the Ministry of Health in 2014 coronary heart disease (CHD) was the highest cause of death after stroke. The largest percentage of cardiovascular disease was in heart rhythm disorders. Electrocardiograph (ECG) was used to detect biopotential signals generated by the heart. This research proposed a low cost electrocardiograph (ECG) prototype by utilizing an application using C Sharp. The system consisted of three surface electrodes, an AD8232 module, and an Arduino Uno module. Surface electrodes detected the electrical activity signal from the heart that was conditioned using AD8232 module and converted to digital signal in Arduino Uno. The bit per minute (BPM) of the heart and the ECG graph are displayed on the laptop screen with graticule to measure the amplitude and the width of the wave. Based on the test results of the ECG prototype compare to the Portable Easy ECG Monitor PC-08B, it is found that the average error of heartbeat per minute  is 1.19 %, the R-R time interval is 2.44 %, the P-R time interval is 2.05 %, the Q-T time interval is 1.16 %, the P wave time interval is 2.58 %, the QRS time interval is 2.07 %,  T wave time interval is 3.26 %, the QRS amplitude is 3.40 %, the P amplitude is 4 %, and the T amplitude is 4.10 %.