Hermansyah Hermansyah
Chemistry Dept. Faculty Mathematics and Natural Sciences Sriwijaya University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Xylose and Arabinose Fermentation to Produce Ethanol by Isolated Yeasts from Durian (Durio zibethinus L.) Fruit Hermansyah Hermansyah; Fachrijal Fachrijal; Miksusanti Miksusanti; Fatma Fatma; Getari Kasmiarti; Almunadi T Panagan
Molekul Vol 14, No 2 (2019)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (461.833 KB) | DOI: 10.20884/1.jm.2019.14.2.562

Abstract

Xylose and arabinose are pentosesugars that present in hemicellulose, part of lignocellulose biomass.These pentose sugars can be fermented by yeast into ethanol.The aim of this research was to utilize yeast isolated from durian fruit (DuriozibethinusL.) in fermentation of xylose and arabinose to produce bioethanol.Phenotypic test of isolates was conducted by growingthe isolates in various agar media, i.e.YPD (Yeast Peptone Dextrose), YPA (Yeast Peptone Arabinose), and YPX (Yeast Peptone Xylose) containing dextrose, arabinose, xylose, respectively, assole carbon source to see cell growth.  The yeast isolates were further identified using API AOC 20C kit method. Yeast isolates were applied for fermentation of glucose, arabinose, and xylosein incubated cultures.  Ethanol production in the fermentation was analyzed bygaschromatography. Yeast isolates were identified as Kodamaea ohmeri, Candida famata, Candida guilliermondii, and Crytococcuc laurentii. Based on gas chromatography data, it was found that ethanol produced in the fermentation for three days, the highest ethanol content on xylose substrate was fermented by Candida famata-Awhich is0.021% (v/v) ethanol resulted from initial concentration of 5% xylose (w/v).  While on arabinose substrate, the highest ethanol content was fermented by Crytococcus laurentii-Bwhich is 0.0034% (v/v) ethanol resulted from initial concentration of 5% arabinose (w/v).
Gene Expression Changes and Anti-proliferative Effect of Noni (Morinda Citrifolia) Fruit Extract Analysed by Real Time-PCR Hermansyah Hermansyah; Susilawati Susilawati
Molekul Vol 12, No 1 (2017)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (674.733 KB) | DOI: 10.20884/1.jm.2017.12.1.333

Abstract

To elucidate the anti-proliferative effect of noni (Morinda citrifolia) fruit extract for a Saccharomyces cerevisiae model organism, analysis of gene expression changes related to cell cycle associated with inhibition effect of noni fruit extract was carried out. Anti-proliferative of noni fruit extract was analyzed using gene expression changes of Saccharomyces cerevisiae (strains FY833 and BY4741).  Transcriptional analysis of genes that play a role in cell cycle was conducted by growing cells on YPDAde broth medium containing 1% (w/v) noni fruit extract, and then subjected using quantitative real-time polymerase chain reaction (RT-PCR).  Transcriptional level of genes CDC6 (Cell Division Cycle-6), CDC20 (Cell Division Cycle-20), FAR1 (Factor ARrest-1), FUS3 (FUSsion-3), SIC1 (Substrate/Subunit Inhibitor of Cyclin-dependent protein kinase-1), WHI5 (WHIskey-5), YOX1 (Yeast homeobOX-1) and YHP1 (Yeast Homeo-Protein-1) increased, oppositely genes expression of DBF4 (DumbBell Forming), MCM1 (Mini Chromosome Maintenance-1) and TAH11 (Topo-A Hypersensitive-11) decreased, while the expression level of genes CDC7 (Cell Division Cycle-7), MBP1 (MIul-box Binding Protein-1) and SWI6 (SWItching deficient-6) relatively unchanged. These results indicated that gene expression changes might associate with anti-proliferative effect from noni fruit extract. These gene expressions changes lead to the growth inhibition of S.cerevisiae cell because of cell cycle defect.