Claim Missing Document
Check
Articles

Found 2 Documents
Search

Microcontroller-Based Lead-Acid Battery Balancing System for Electric Vehicle Applications Ali Rospawan; Joni Welman Simatupang
Jurnal Elektronika dan Telekomunikasi Vol 21, No 2 (2021)
Publisher : LIPI Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/jet.v21.128-139

Abstract

In application of lead-acid batteries for electrical vehicle applications, 48 V of four 12 V batteries in a series configuration are required. However, the battery stack is repeatedly charged and discharged during operation. Hence, differences in charging and discharging speeds may result in a different state-of-charge of battery cells. Without proper protection, it may cause an excessive discharge that leads to premature degradation of the battery. Therefore, a lead-acid battery requires a battery management system to extend the battery lifetime. Following the LTC3305 balancing scheme, the battery balancing circuit with auxiliary storage can employ an imbalance detection algorithm for sequential battery. It happens by comparing the voltage of a battery on the stack and the auxiliary storage. In this paper, we have replaced the function of LTC3305 by a NUCLEO F767ZI microcontroller, so that the balancing process, the battery voltage, the drawn current to or from the auxiliary battery, and the surrounding temperature can be fully monitored. The prototype of a microcontroller-based lead-acid battery balancing system for electrical vehicle application has been fabricated successfully in this work. The batteries voltage monitoring, the auxiliary battery drawn current monitoring, the overcurrent and overheat protection system of this device has also successfully built. Based on the experimental results, the largest voltage imbalance is between battery 1 and battery 2 with a voltage imbalance of 180 mV. This value is still higher than the target of voltage imbalance that must be lower than 12.5 mV. The balancing process for the timer mode operation is faster 1.5 times compared to the continuous mode operation. However, there were no overcurrent or overtemperature occurred during the balancing process for both timer mode and continuous mode operation. Furthermore, refinement of this device prototype is required in the future to improve the performance significantly.
A Simple, Cheap and Precise Microcontroller Based DDS Function Generator Ali Rospawan; Joni Welman Simatupang; Irwan Purnama
Journal of Electrical And Electronics Engineering Vol 3, No 2 (2019)
Publisher : President University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (546.23 KB) | DOI: 10.33021/jeee.v3i2.1491

Abstract

In electronics design and troubleshooting, the function generator is an important and versatile electronic test equipment. But the prices of finished function generator sold on market is expensive and not everyone can afford it. In order to create an economic and reliable function generator, microcontroller-based DDS function generator designed. AD9833 is DDS based programmable function generator from Analog Devices, which capable to producing sine, triangular and square wave output. To make an easy to use and flexible function generator, AD9833 connected with 4x4 matrix membrane keypad and LCD 1602. The microcontroller-based DDS function generator successfully created. The waveform generated by AD9833 offers not only exceptional accuracy and stability, but also low phase noise, an excellent frequency change and sudden waveform change ability, its useful in a wide variety of testing applications.