Tumpal Bernhard Nainggolan
Marine Geological Institute

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 7 Documents
Search

STRUKTUR GEOLOGI PERAIRAN MOROWALI – TELUK KENDARI DARI HASIL INTERPRETASI PENAMPANG MIGRASI SEISMIK 2D Tumpal Bernhard Nainggolan; Gusti Muhammad Hermansyah; Priatin Hadi Wijaya
JURNAL GEOLOGI KELAUTAN Vol 15, No 1 (2017)
Publisher : Pusat Penelitian dan Pengembangan Geologi Kelautan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (12208.779 KB) | DOI: 10.32693/jgk.15.1.2017.374

Abstract

Lokasi penelitian mencakup sebagian besar wilayah perairan Morowali sampai ke selatan ke arah Teluk Kendari bertujuan untuk mendapatkan gambaran struktur geologi dan morfologi bawah permukaan dasar laut Kepingan Benua Banggai-Sula sampai Kepingan Benua Sulawesi Tenggara. Hasil peta batimetri menunjukkan kedalaman paling dangkal sekitar 500 meter terdapat di bagian utara dengan pola kontur tertutup yang membentuk cekungan kecil yang tidak begitu curam, sedangkan kearah bagian timur dan selatan-tenggara memperlihatkan kondisi morfologi dasar laut semakin dalam mencapai 2000 meter dan curam. Dari hasil penampang seismik didapatkan informasi perairan Morowali terdapat enam sekuen dengan seismic basement disebandingkan dengan Kompleks Batuan Malihan berumur Karbon, sedangkan struktur geologi teluk Kendari secara umum menunjukkan pembagian dua zona, yaitu zona pertama di bagian timur, perlapisan sedimen sangat tipis dibandingkan dengan zona barat.Kata kunci : struktur geologi, morfologi, peta batimetri, interpretasi penampang seismik The survey covered most part of Morowali waters to the south towards Kendari Gulf aims to achieve an overview of the geological structures and morphological beneath seabed sub-surface of Banggai-Sula and Southeast Sulawesi micro-continent. The bathymetric map shows the shallowest depth about 500 meters in the north with a closed contour pattern that form a sloping basin, while towards the eastern and south-southeast part shows a deeper morphological condition up to 2000 meters and steep. Seismic cross-section interpretation of Morowali waters describe six sequences with seismic basement compared to Malihan rocks of Carbon era, while the geological structure of Kendari Gulf generally shows very thin sedimentary layers of eastern zone compared to western zone.Keywords : geological structures, morphological information, bathymetric map, seismic cross-section interpretation
Practical Implementation of Multiple Attenuation Methods on 2D Deepwater Seismic Data : Seram Sea Case Study Tumpal Bernhard Nainggolan; Deny Setiady
BULLETIN OF THE MARINE GEOLOGY Vol 32, No 1 (2017)
Publisher : Marine Geological Institute of Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (6529.918 KB) | DOI: 10.32693/bomg.32.1.2017.365

Abstract

Some deepwater multiple attenuation processing methods have been developed in the past with partial success. The success of surface multiple attenuation relies on good water bottom reflections for most deepwater marine situations. It brings the bigger ability to build an accurate water bottom multiple prediction model. Major challenges on 2D deepwater seismic data processing especially such a geologically complex structure of Seram Sea, West Papua – Indonesia are to attenuate surface related multiple and to preserve the primary data. Many multiple attenuation methods have been developed to remove surface multiple on these seismic data including most common least-squares, prediction-error filtering and more advanced Radon transform.Predictive Deconvolution and Surface Related Multiple Elimination (SRME) method appears to be a proper solution, especially in complex structure where the above methods fail to distinguish interval velocity difference between primaries and multiples. It does not require any subsurface info as long as source signature and surface reflectivity are provided. SRME method consists of 3 major steps: SRME regularization, multiple modeling and least-square adaptive subtraction. Near offset regularization is needed to fill the gaps on near offset due to unrecorded near traces during the acquisition process. Then, isolating primaries from multiples using forward modeling. Inversion method by subtraction of input data with multiple models to a more attenuated multiple seismic section.Results on real 2D deepwater seismic data show that SRME method as the proper solution should be considered as one of the practical implementation steps in geologically complex structure and to give more accurate seismic imaging for the interpretation.Keywords : multiple attenuation, 2D deepwater seismic, Radon transform, Surface Related Multiple Elimination (SRME). Banyak metode atenuasi pengulangan ganda dikembangkan pada pengolahan data seismik dengan tingkat keberhasilan yang rendah pada masa lalu. Keberhasilan dalam atenuasi pengulangan ganda permukaan salah satunya bergantung pada hasil gelombang pantul pada batas dasar laut dan permukaan pada hampir seluruh survei seismik laut. Hal tersebut menentukan keakuratan dalam membuat model prediksi pengulangan ganda dasar laut dan permukaan air. Tantangan utama dalam pemrosesan data seismik 2D laut dalam khususnya struktur geologi kompleks seperti Laut Seram, Papua Barat – Indonesia adalah pada kegiatan menekan pengulangan ganda permukaan sekaligus mempertahankan data primer. Beberapa metode yang dikembangkan untuk menghilangkan pengulangan ganda permukaan pada data seismik seperti least-square, filter prediksi kesalahan dan transformasi Radon.Dekonvolusi Prediktif dan Metode Surface Related Multiple Elimination (SRME) digunakan sebagai solusi yang baik pada struktur kompleks dimana metode-metode lain gagal untuk memisahkan perbedaan kecepatan interval data primer dan pengulangan ganda. Metode tersebut tidak membutuhkan informasi bawah permukaan selain parameter sumber dan reflektivitas permukaan. Metode SRME terdiri dari 3 tahapan utama : regularisasi SRME, pemodelan pengulangan ganda dan pengurangan adaktif least-square. Regularisasi near offset diperlukan untuk mengisi kekosongan pada near offset yang disebabkan oleh adanya sejumlah tras terdekat yang tidak terekam selama akuisisi. Pemodelan maju digunakan untuk memisahkan data primer dan pengulangan ganda kemudian inversi dengan pengurangan input data dengan model multiple.Hasil pada data seismik 2D laut dalam menunjukkan bahwa metode SRME layak diterapkan sebagai salah satu pengembangan metode atenuasi multiple permukaan serta untuk meningkatkan akurasi data seismik terutama untuk struktur geologi kompleks.Kata kunci : peredaman pengulangan ganda (multiple), seismik 2D laut dalam, transformasi Radon, Surface Related Multiple Attenuation (SRME).
Combined Multiple Attenuation Methods and Geological Interpretation : Seram Sea Case Study 2D Marine Seismic Data Tumpal Bernhard Nainggolan; Said Muhammad Rasidin; Imam Setiadi
BULLETIN OF THE MARINE GEOLOGY Vol 34, No 1 (2019)
Publisher : Marine Geological Institute of Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (6771.046 KB) | DOI: 10.32693/bomg.34.1.2019.622

Abstract

Multiple often and always appear in marine seismic data due to very high acoustic impedance contrasts. These events have undergone more than one reflection. This causes the signal to arrive back at the receiver at an erroneous time, which, in turn, causes false results and can result in data misinterpretation. Several types of multiple suppression have been studied in literature. Methods that attenuate multiples can be classified into three broad categories: deconvolution methods; filtering methods and wavefield prediction subtraction methods. The study area is situated on Seram Sea in between 131°15’E – 132°45’E and 3°0’S – 4°0’S, Seram Trough which is located beneath Seram Sea at northern part of the Banda-Arc – Australian collision zone and currently the site of contraction between Bird’s Head and Seram. This research uses predictive deconvolution and FK-filter to attenuate short period multiple from their move out, then continued by SRME method to predict multiple that cannot be attenuated from previous method, then followed by Radon transform to attenuate multiple that still left and cannot be attenuated by SRME method. The result of each method then compared to each other to see how well multiple attenuated. Predictive deconvolution and F-K filter could not give satisfactory result especially complex area where multiple in dipping event is not periodic, SRME method successfully attenuate multiple especially in near offset multiple without need subsurface information, while SRME method fails to attenuate long offset multiple, combination of SRME method and Radon transform can give satisfactory result with careful selection of the Radon transform parameters because it can obscure some primary reflectors. Based on geological interpretation, Seram Trough is built by dominant structural style of deposited fold and thrust belt. The deposited fold and thrust belt has a complexly fault geometry from western zone until eastern of seismic line.
Spectral Decomposition with Continuous Wavelet Transform for Hydrocarbon Zone Detection of North Bali Waters Tumpal Bernhard Nainggolan; Muh. Nur Iqlal Manai; Subarsyah Subarsyah
BULLETIN OF THE MARINE GEOLOGY Vol 33, No 2 (2018)
Publisher : Marine Geological Institute of Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (8653.339 KB) | DOI: 10.32693/bomg.33.2.2018.556

Abstract

The East Java Basin is developed from an oceanic basin in front of Late Cretaceous Java Trench subduction zone to presently back-arc basin behind the Java-Lombok volcanic arc to the south. Many studies conclude hydrocarbon discovery in deep carbonate Ngimbang Formation. However, as a result of the active tectonic history of the region, there are fractures from Ngimbang Formation upward to the Oligo-Miocene Kujung Formation. It developes enhanced permeability medium for a good hydrocarbon migration. This paper presents shallow gas detection zone in the Mundu Formation by applying the spectral decomposition method with continous wavelet transform. Spectral decomposition can be effectively used to identify hydrocarbon reservoirs by analyzing seismic data in the frequency domain. Spectral decomposition with frequency 20 Hz shows the potential zone at time 779 - 832 ms which is suitable with depth 2237.5 - 2355.6 feet in well TRG-1. This method is supported with quantitative calculation of petrophysical analysis that determines 5 pay flag zones range from 2208.5 feet until 2347.5 feet.Keywords : East Java Basin, spectral decomposition, continuous wavelet transform, petrophysical analysisCekungan Jawa Timur terbentuk dari cekungan samudera di tepi zona subduksi pulau Jawa pada masa Cretaseous/Kapur Akhir hingga cekungan busur belakang sistem vulkanik Jawa-Lombok di selatan. Banyak penelitian menyimpulkan penemuan hidrokarbon pada lapisan karbonat Formasi Ngimbang yang dalam. Namun, sebagai akibat dari sejarah tektonik aktif dari wilayah tersebut, terdapat rekahan dari Formasi Ngimbang sampai ke atas hingga Formasi Kujung pada masa Oligo-Miosen. Kejadian tersebut menyebabkan timbulnya peningkatan permeabilitas medium yang baik untuk migrasi hidrokarbon. Makalah ini menyajikan deteksi zona gas dangkal pada Formasi Mundu dengan menerapkan metode dekomposisi spektral dengan transformasi wavelet kontinyu. Dekomposisi spektral dapat secara efektif digunakan untuk mengidentifikasi reservoir hidrokarbon dengan menganalisa data seismik dalam domain frekuensi. Dekomposisi spektral dengan frekuensi 20 Hz menunjukkan zona potensial pada kedalaman domain waktu 779 - 832 ms yang sesuai dengan 2237.5 - 2355.6 kaki pada sumur TRG-1. Metode ini didukung dengan perhitungan kuantitatif analisa petrofisika yang menentukan 5 zona gas mulai dari 2208.5 kaki hingga 2.347.5 kaki.Kata kunci : Cekungan Jawa Timur, dekomposisi spektral, transformasi wavelet kontinyu, analisa petrofisika
Petrophysical Analysis to Determine Reservoir and Source Rocks in Berau Basin, West Papua Waters Popy Dwi Indriyani; Asep Harja; Tumpal Bernhard Nainggolan
BULLETIN OF THE MARINE GEOLOGY Vol 35, No 1 (2020)
Publisher : Marine Geological Institute of Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32693/bomg.35.1.2020.659

Abstract

Berau Basin is assessed to have same potential in clastic sediments with Mesozoic and Paleozoic ages, where reservoirs and source rocks are similar to productive areas of hydrocarbons in Northwest Shield Australia. This study aims to identify the hydrocarbon prospect zones and potential rocks zones using petrophysical parameters, such as shale volume, porosity, water saturation and permeability. Petrophysical analysis of reservoir and source rock are carried out on three wells located in the Berau Basin, namely DI-1, DI-2 and DI-3 in Kembelangan and Tipuma Formation. Qualitative analysis shows that there are 4 reservoir rock zones and 4 source rock zones from thorough analysis of these three wells. Based on quantitative analysis of DI-1 well, it has an average shale volume (Vsh) 9.253%, effective porosity (PHIE) 20.68%, water saturation (Sw) 93.3% and permeability (k) 55.69 mD. DI-2 well’s average shale volume, effective porosity, water saturation and permeability values are 29.16%, 2.97%, 67.9% and 0.05 mD, respectively. In DI-3 well, average shale volume, effective porosity, water saturation and permeability values are 6.205%, 19.36%, 80.2% and 242.05 mD, respectively. From the reservoir zone of these three wells in Kembelangan Formation, there are no show any hydrocarbon prospect.Keywords: reservoir, source rock, shale volume, porosity, water saturation, permeability, Kembelangan Formation, Tipuma Formation, Berau BasinCekungan Berau diperkirakan memiliki potensi yang sama dengan sedimen klastik yang berumur Mesozoikum dan Palezoikum, di mana reservoar dan batuan induknya memiliki kesebandingan dengan daerah produktif hidrokarbon di Paparan Barat Laut Australia. Penelitian ini bertujuan untuk mengidentifikasi zona prospek hidrokarbon dan zona potensi batuan induk dengan menggunakan parameter petrofisika, yaitu volume shale, porositas, saturasi air dan permeabilitas. Analisis petrofisika batuan reservoar dan batuan induk dilakukan pada tiga sumur bor yang terletak di Cekungan Berau yaitu Sumur DI-1, DI-2 dan DI-3 pada Formasi Kembelangan dan Tipuma. Hasil analisis kualitatif menunjukan terdapat empat zona reservoar dan empat zona batuan induk dari keseluruhan tiga sumur. Berdasarkan analisis kuantitatif, sumur DI-1 memiliki nilai rata-rata volume shale (Vsh) 9,253%, porositas efektif (PHIE) 20,68%, saturasi air (Sw) 93,3% dan permeabilitas (k) 55,69 mD. Pada sumur DI-2, nilai rata-rata volume shale 29,16%, porositas efektif 2,97%, saturasi air 67,9% dan permeabilitas 0,05 mD. Serta pada sumur DI-3, nilai rata-rata volume shale 6,205%, porositas efektif 19,36%, saturasi air 80,2%, dan permeabilitas 242,05 mD. Dari zona reservoar Formasi Kembelangan untuk tiga sumur tersebut, tidak menunjukan adanya prospek hidrokarbon.Kata Kunci: reservoar, batuan induk, petrofisika, volume shale, porositas, saturasi air, permeabilitas, Formasi Kembelangan, Formasi Tipuma, Cekungan Berau
Reservoir Characterization Using Acoustic Impedance Inversion and Multi-Attribute Analysis in Nias Waters, North Sumatra Fathkhurozak Yunanda Rifai; Tumpal Bernhard Nainggolan; Henry Munandar Manik
BULLETIN OF THE MARINE GEOLOGY Vol 34, No 1 (2019)
Publisher : Marine Geological Institute of Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3136.168 KB) | DOI: 10.32693/bomg.34.1.2019.637

Abstract

Seismic method is one of the most frequently applied geophysical methods in the process of oil and gas exploration. This research is conducted in Nias Waters, North Sumatra using one line 2D post-stack time migration seismic section and two wells data. Reservoir characterization is carried out to obtain physical parameters of rocks affected by fluid and rock lithology. Seismic inversion is used as a technique to create acoustic impedance distribution using seismic data as input and well data as control. As final product, multi-attribute analysis is applied to integrate of inversion results with seismic data to determine the lateral distribution of other parameters contained in well data. In this research, multi-attribute analysis is used to determine the distribution of NPHI as a validation of hydrocarbon source rocks. In that area, there is a gas hydrocarbon prospect in limestone lithology in depth around 1450 ms. Based on the results of sensitivity analysis, cross-plot between acoustic impedance and NPHI are sensitive in separating rock lithology, the target rock in the form of limestone has physical characteristics in the form of acoustic impedance values in the range of 20,000-49,000 ((ft/s)*(g/cc)) and NPHI values in the range of 5-35 %. While the results of the cross-plot between the acoustic impedance and resistivity are able to separate fluid-containing rocks with resistivity values in the range about 18-30 ohmm. The result of acoustic impedance inversion using the model based method shows the potential for hydrocarbons in the well FYR-1 with acoustic impedance in the range 21,469-22,881 ((ft/s)*(gr/cc)).
Delineation of Sedimentary Subbasin and Subsurface Interpretation East Java Basin in the Madura Strait and Surrounding Area Based on Gravity Data Analysis Imam Setiadi; Budi Setyanta; Tumpal Bernhard Nainggolan; Joni Widodo
BULLETIN OF THE MARINE GEOLOGY Vol 34, No 1 (2019)
Publisher : Marine Geological Institute of Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (8350.009 KB) | DOI: 10.32693/bomg.34.1.2019.621

Abstract

East Java basin is a very large sedimentary basin and has been proven produce hydrocarbons, this basin consists of several different sub-basins, one of the sub-basin is in the Madura Strait and surrounding areas. Gravity is one of the geophysical methods that can be used to determine geological subsurface configurations and delineate sedimentary sub-basin based on density parameter. The purposes of this study are to delineate sedimentary sub-basins, estimate the thickness of sedimentary rock, interpret subsurface geological model and identify geological structures in the Madura Strait and surrounding areas. Data analysis which used in this paper are spectral analysis, spectral decomposition filter and 2D forward modeling. The results of the spectral analysis show that the thickness of sedimentary rock is about 3.15 Km. Spectral decomposition is performed at four different wave numbers cut off, namely (0.36, 0.18, 0.07 and 0.04), each showing anomaly patterns at depth (1 Km, 2 Km, 3 Km and 4 Km). The sub-basins that can be delineated from the gravity data analysis are 10 sedimentary sub-basins, while the structural patterns identified are basement high, graben and fault. 2D modeling results indicate that the basement is a continental crust with a mass density value of 2.7 gr/cc. Sedimentary rock from modeling result consecutively from the bottom to up, the first is Paleogene sedimentary rock with mass density value of 2.4 gr/cc and above this layer is Neogene sedimentary rocks with mass density values of 2.25 gr/cc. The results of the subsurface geological modeling analysis show that based on the graben pattern and the basement high of the East Java basin in the Madura Strait and surrounding areas there are many structural patterns that support the development of petroleum systems like at the western part of the East Java basin that have already produced hydrocarbon.Keywords : Gravity, spectral analysis, spectral decomposition filter, 2D Modeling, East java basin Cekungan Jawa Timur merupakan cekungan sedimen yang sangat besar dan telah terbukti memiliki kandungan minyak dan gas bumi. Cekungan ini terdiri atas beberapa sub-cekungan yang berbeda-beda, salah satunya adalah sub-cekungan yang ada pada wilayah selat Madura dan sekitarnya. Gayaberat merupakan salah satu metoda geofisika yang dapat digunakan untuk mengetahui konfigurasi bawah permukaan serta mendelineasi sub-cekungan sedimen berdasarkan parameter rapat massa (densitas). Tujuan dari penelitian ini adalah untuk mendelineasi sub-cekungan sedimen, memperkirakan ketebalan sedimen, menginterpretasi geologi bawah permukaan serta mengidentifikasi struktur yang ada pada wilayah selat madura dan sekitarnya. Analisis data yang digunakan yaitu analisis spektral, filter spektral dekomposisi serta pemodelan maju (forward modeling) 2D. Hasil analisis spektral menunjukaan bahwa tebal batuan sedimen rata-rata adalah sekitar 3.15 Km. Spektral dekomposisi dilakukan pada empat bilangan gelombang cuttoff yang berbeda beda yaitu (0.36, 0.18, 0.07 dan 0.04) yang masing-masing menunjukkan pola anomali pada kedalaman (1 Km, 2 Km, 3 Km dan 4 Km). Sub-cekungan yang dapat didelineasi dari analisis data gayaberat ini adalah sebanyak 10 sub-cekungan sedimen, sedangkan pola struktur yang teridentifikasi yaitu berupa tinggian, graben dan patahan. Hasil pemodelan 2D menunjukkan bahwa batuan dasar adalah berupa kerak kontinen dengan nilai rapat massa 2.7 gr/cc. Batuan sedimen hasil pemodelan secara berturut turut dari bawah ke atas yang pertama yaitu batuan sedimen yang berumur Paleogen dengan nilai rapat massa 2.4 gr/cc dan di atasnya adalah batuan sedimen berumur Neogen yang mempunyai nilai rapat massa 2.25 gr/cc. Hasil analisis model bawah permukaan menunjukkan bahwa berdasarkan pola graben dan tinggian cekungan Jawa Timur segmen selat Madura dan sekitarnya cukup banyak terdapat pola struktur yang mendukung berkembangnya petroleum system seperti pada wilayah sebelah barat cekungan Jawa Timur yang sudah berproduksi hidrokarbon.Kata Kunci : Gayaberat, spektral analisis, filter spektral dekomposisi, pemodelan 2D, Cekungan Jawa Timur