Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : JURNAL KIMIA SAINS DAN APLIKASI

Effect of Microencapsulation Techniques on Physical and Chemical Characteristics of Functional Beverage Based on Red Betel Leaf Extract (Piper crocatum) Mega Safithri; Susi Indariani; Rosalina Yuliani
Jurnal Kimia Sains dan Aplikasi Vol 23, No 8 (2020): Volume 23 Issue 8 Year 2020
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (43.048 KB) | DOI: 10.14710/jksa.23.8.276-282

Abstract

Functional drinks based on red betel leaf extract have antioxidant activity, but they still have a bitter taste. This study aims to determine the effect of microencapsulation on phenol content, antioxidant activity, and sensory quality of functional drinks based on betel leaf extract. Microencapsulation of functional drinks was made using maltodextrin coatings with concentrations of 10% and 20%. Antioxidant activity was tested by the CUPRAC method. The ready to drink (RTD) functional drink has a total phenolic content and antioxidant activity of 782.30 ± 2.54 mg GAE/g and 1660.19 ± 31.67 µmol Tr/g, respectively. These values are higher than microencapsulated functional drinks with maltodextrin (MM). The microencapsulated functional drink with 10% maltodextrin coating (MM10) is the chosen formulation since it has the smallest particle size (1.283 µm), total phenolic content of 12.90 ± 0.01 mg GAE/g and antioxidant activity of 189.41 ± 1.88 µmol Tr/g. Microencapsulated functional drinks provide sensory quality that is not significantly different (p <0.05) from ready to drink (RTD) drinks.
In Silico Screening of Cinnamon (Cinnamomum burmannii) Bioactive Compounds as Acetylcholinesterase Inhibitors Zatta Yumni Ihdhar Syarafina; Mega Safithri; Maria Bintang; Rini Kurniasih
Jurnal Kimia Sains dan Aplikasi Vol 25, No 3 (2022): Volume 25 Issue 3 Year 2022
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (467.877 KB) | DOI: 10.14710/jksa.25.3.97-107

Abstract

Alzheimer’s is a progressive and neurodegenerative disease that mainly affects people aged 65 years and older. The pathophysiology of Alzheimer’s is possibly related to the depletion of the neurotransmitter acetylcholine (ACh) due to beta-amyloid plaques and neurofibrillary tangles. Secondary metabolites found in cinnamon bark (Cinnamomum burmannii) have the potential as anticholinesterases to treat Alzheimer’s symptoms. This study aimed to identify the potency of bioactive compounds from cinnamon bark as AChE inhibitors in silico through analysis of binding energy, inhibition constants, and types of interactions. The research was conducted by screening virtually 60 test ligands using the PyRx program and molecular docking using the Autodock Tools program. The results of the ligand-receptor interaction analysis showed that 12 of the 15 tested ligands had potential as AChE inhibitors. Epicatechin and medioresinol are the ligands with the best potential for AChE inhibition with affinity close to the natural ligand or donepezil. Epicatechin has a binding energy of −10.0 kcal/mol and inhibition constant of 0.0459 M, with four hydrogen bonds and seven hydrophobic bonds. Meanwhile, medioresinol has −9.9 kcal/mol binding energy and inhibition constant of 0.0543 M, with one hydrogen bond and thirteen hydrophobic bonds.
Molecular Docking of Red Betel (Piper crocatum Ruiz & Pav) Bioactive Compounds as HMG-CoA Reductase Inhibitor Bella Fatima Dora Zaelani; Mega Safithri; Dimas Andrianto
Jurnal Kimia Sains dan Aplikasi Vol 24, No 3 (2021): Volume 24 Issue 3 Year 2021
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3142.999 KB) | DOI: 10.14710/jksa.24.3.101-107

Abstract

Cholesterol plaque buildup in artery walls occurs due to oxidation of Low-Density Lipoprotein (LDL) molecules by free radicals, which are a risk factor for coronary heart disease. Piper crocatum contains active compounds that can act as HMG-CoA reductase inhibitors, such as flavonoids, alkaloids, polyphenols, tannins, and essential oils. This study aimed to predict the potential of Piper crocatum extract and fraction compounds as HMG-CoA reductase inhibitors by investigating the ligand affinity to the HMG-CoA reductase enzyme. Ligand and receptor preparation was conducted using BIOVIA Discovery Studio Visualizer v16.1.0.15350 and AutoDock Tools v.1.5.6. Molecular docking used AutoDock Vina, while ligand visualization and receptor binding used PyMOL(TM) 1.7.4.5.Edu. The receptor used was HMG-CoA reductase (PDB code: 1HWK) with atorvastatin as a control ligand. Catechin, schisandrin B, and CHEMBL216163 had the highest inhibition with affinity energies of -7.9 kcal/mol, -8.2 kcal/mol, -8.3 kcal/mol, respectively. Amino acid residues that played a role in ligand and receptor interactions were Ser684, Asp690, Lys691, Lys692.