Claim Missing Document
Check
Articles

Found 8 Documents
Search

KEMATIAN MASSAL IKAN DI WADUK CIRATA PADA JANUARI 2013 Suwedi, Nawa; T, Abimanyu; Alamsyah, Alamsyah; Sutjiningsih, Dwita; Garno, Yudhi S
LIMNOTEK - Perairan Darat Tropis di Indonesia Vol 22, No 1 (2015)
Publisher : Research Center for Limnology

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kematian massal ikan di wadukdapat dipengaruhi oleh beberapa faktor, salahsatunya adalah ketersediaan oksigen terlarut dalam air waduk. Pendekatan pemahaman kejadian kematian massal ikan yang berbeda dengan yang biasa telah dilakukan dalam penelitian ini. Pendekatan yang dilakukan adalah analisis keterkaitan antara kejadian kematian massal ikan dengan data cuaca. Data cuaca yang dimaksud adalah intensitas cahaya matahari, temperatur udara permukaan, kondisi awan, hujan, arah angin, dan kecepatan angin. Pengamatan data cuaca dilakukan diWaduk Cirataantara tanggal 1 Nopember2012 sampai 31 Januari 2013. Dari pengamatan data tutupan awan dan hujan, diketahui bahwa pada kejadian kematian massal ikan tanggal 17, 18 dan 19 Januari, Waduk Cirata ada dalam kondisi tertutup awan dari tanggal 9 sampai 19 Januari dan hujan terjadi antara tanggal 11 - 19 Januari. Diantara hari hujan tersebut, menjelang kejadian dan pada saat kejadian (antara tanggal 16, 17 dan 18 Januari) kondisi hujan relatif tinggi yaitu antara 5 sampai 8 jam dari 13 jam pengamatan.Dari pengamatan arah angin dominanantara tanggal 16, 17 dan 18 Januari, diketahui bahwa angin dominan berasal dari arah Timur dan Timur Laut. Hal ini yang dapat menjelaskan mengapa kematian massal ikan dapat terjadi di:sebagian blok Gado Bangkong sampai Cipicung, sebagian blok Cibogo sampai Citatah, dan sebagian blok Pasir Anas sampai Sangkali (Bandung Barat); sebagian blok Cimanggu, Cadas, dan Tanah Beurem Sona (Purwakarta); dan sebagian blok Patokbesi (Cianjur).
Soil Erosion Prediction Using GIS and Remote Sensing on Manjunto Watershed Bengkulu, Indonesia Gusta Gunawan; Dwita Sutjiningsih; Herr Soeryantono; Soelistiyoweni Widjanarko
JOURNAL OF TROPICAL SOILS Vol 18, No 2: May 2013
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2013.v18i2.141-148

Abstract

The study aims to assess the rate of erosion that occurred in Manjunto Watershed and financial loss using Geographic Information System and Remote Sensing. Model used to determine the erosion is E30 models. The basis for the development of this model is to integrate with the slope of the slope between NDVI. The value of NDVI obtained from satellite imagery. Slope factor obtained through the DEM processing. To determine the amount of economic losses caused by erosion used the shadow prices. The amount of nutrients lost converted to fertilizer price. The results showed that the eroded catchment area has increased significantly. The rate of average annual erosion in the watershed Manjunto in 2000 amounted to 3 Mg ha-1 yr-1. The average erosion rate in the watershed Manjunto annual increase to 27 Mg ha-1 yr-1 in the year 2009. Economic losses due to erosion in 2009 was Rp200,000,- for one hectare. Total losses due to erosion for the total watershed area is Rp15,918,213,133, -. The main factor causing the high rate of erosion is high rainfall, slope and how to grow crops that do not pay attention to the rules of conservation.Keywords: Soil erosion, digital elevation model, GIS, remote sensing, valuation erosion[How to Cite: Gunawan G, D Sutjiningsih, H Soeryantono and S Widjanarko. 2013.Soil Erosion Prediction Using GIS and Remote Sensing on Manjunto Watershed Bengkulu-Indonesia. J Trop Soils 18 (2): 141-148. Doi: 10.5400/jts.2013.18.2.141][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.2.141]REFERENCESAksoy E, G Ozsoy and MS Dirim. 2009. Soil mapping approach in GIS using Landsat satellite imagery and DEM data. Afr J Agric Res 4: 1295-1302.Ananda J and G Herath. 2003. Soil erosion in developing countries: a socio-economic appraisal. J Environ Manage 68: 343-353.Ananda J, G Herath and A Chisholm. 2001. Determination of yield and Erosion Damage Functions Using Subjectivly Elicited Data: application to Smallholder Tea in Sri Lanka. Aust J Agric Resour Ec 45: 275-289.Ande OT, Y Alaga and GA Oluwatosin. 2009. Soil erosion prediction using MMF model on highly dissected hilly terrain of Ekiti environs in southwestern Nigeria. Int J Phys Sci 4: 053-057.Arnold JG, BA Engel and R Srinivasan. 1998. A continuous time grid cell watershed model. Proc. of application of Advanced Technology for management of Natural Resources.Arsyad S.  2010. Konservasi Tanah dan Air. IPB Press. Bogor-Indonesia (in Indonesian).Asdak C.1995. Hydrology and Watershed Management. Gadjah Mada University Press, Yogyakarta.Barlin RD and ID Moore. 1994. Role of buffer strips in management of waterway pollution: a review. Environ Manage 18: 543-58.Brough PA.1986. Principle of Geographical Information Systems For Land Resources Assessment. Oxford University Press, 194p.Clark B and J Wallace. 2003. Global connections: Canadian and world issues. Toronto, Canada: Pearson Education Canada, Inc.Cochrane T A and DC Flanagan. 1999. Assessing water erosion in small watershed using WEPP with GIS and digital elevation models. J Soil Water Conserv 54: 678 685.Dames TWg. 1955. The Soils of East Central Java; with a Soil Map 1:250,000. Balai Besar Penjelidikan Pertanian, Bogor, Indonesia.Dixon JA, LF Scura, RA Carpenter and PB Sherman. 2004. Economic Analysis of Environmental Impacts 2nd ed. Eartscans Publication Ltd., London.Fistikoglu O and NB Harmancioglu. 2002. Integration of GIS with USLE in Assessment of Soil Erosion. Water Resour Manage 16: 447-467.Green K. 1992. Spatial imagery and GIS: integrated data for natural resource management. J Forest 90: 32-36.Hazarika MK and H Honda. 2001. Estimation of Soil Erosion Using Remote Sensing and GIS, Its Valuation & Economic Implications on Agricultural Productions. The 10th International Soil Conservation Organization Meeting at Purdue University and the USDA-ARS Soil Erosion Research Laboratory.Hazarika S, R Parkinson, R Bol, L Dixon, P Russell, S Donovan and D Allen. 2009. Effect of tillage system and straw management on organic matter dynamics. Agron Sustain Develop 29: 525-533. doi: 10.1051/agro/2009024. Honda KL, A Samarakoon, Y Ishibashi, Mabuchi and S Miyajima.1996. Remote Sensing and GIS technologies for denudation estimation in Siwalik watershed of Nepal,p. B21-B26. Proc. 17th Asian Conference on Remote Sensing, Colombo, Sri lanka.Kefi M and K Yoshino. 2010. Evaluation of The Economic Effects of Soil Erosion Risk on Agricultural Productivity Using Remote Sensing: Case of Watershed in Tunisia. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 8, Kyoto Japan.Kefi M, K Yoshino, K Zayani and H Isoda. 2009. Estimation of soil loss by using combination of Erosion Model and GIS: case of study watersheds in Tunisia. J Arid Land Stud 19: 287-290.Lal R. 1998. Soil erosion impact on agronomic productivity and environment quality: Critical Review. Plant Sci 17: 319-464.Lal. 2001. Soil Degradation by Erosion. Land Degrad Develop12: 519-539.Lanya I. 1996. Evaluasi Kualitas lahan dan Produktivitas Lahan Kering Terdegradasi di Daerah Transmigrasi WPP VII Rengat Kabupaten Indragiri Hulu, Riau. [Disertasi Doktor]. Program Pasca Sarjana IPB, Bogor (in Indonesian).Mermut AR and H Eswaran. 2001. Some major developments in soil science since the mid 1960s. Geoderma 100: 403-426.Mongkolsawat C, P Thurangoon and Sriwongsa.1994. Soil erosion mapping with USLE and GIS. Proc. Asian Conf. Rem. Sens., C-1-1 to C-1-6.Morgan RPC, Morgan DDV and Finney HJ. 1984. A predictive model for the assessment of erosion risk. J Agric Eng Res 30: 245-253.Morgan RPC. 2005. Soil Erosion and Conservation. 3rd ed. Malden, MA: Blackwell Publishing Co.Panuju DR,  F Heidina, BH Trisasongko, B Tjahjono, A Kasno, AHA Syafril. 2009. Variasi nilai indeks vegetasi MODIS pada siklus pertumbuhan padi. J.Ilmiah Geomat. 15, 9-16 (in Indonesian).Pimentel D, C Harvey, P Resosudarmo, K. Sinclair, D Kurz, M Mc Nair, S Christ, L Shpritz, L Fitton, R Saffouri and R Balir. 1995. Environmental and Economic Costs of Soil Erosion and Conservation Benefits. Science 267: 1117-1123.Saha SK and LM Pande. 1993. Integrated approach towards soil erosion inventory for environmental conservation using satellite and agrometeorological data. Asia Pac Rem Sens J 5: 21-28.Saha SK, Kudrat M and Bhan SK.1991. Erosional soil loss prediction using digital satellitee data and USLE. In: S Murai (ed).  Applications of Remote Sensing in Asia and Oceania – Environmental Change Monitoring.  Asian Association of Remote Sensing, pp. 369-372.Salehi MH, Eghbal MK and Khademi H. 2003. Comparison of soil variability in a detailed and a reconnaissance soil map in central Iran. Geoderma 111: 45-56.Soil Survey Staff.  1998.  Keys to Soil Taxonomy. Eighth Edition. United States Department of Agriculture Natural Resources Conservation Service. Washington, D.C.
Estimation of Potential Water Availability and Water Resources Carrying Capacity for Bogor City Spatial Plan Atie Tri Juniati; Eko Kusratmoko; Dwita Sutjiningsih
Journal of Geography of Tropical Environments Vol 5, No 1 (2021): April
Publisher : Open Journal System

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.7454/jglitrop.v5i1.98

Abstract

The aim of the present research is to examine the effectiveness of rational method widely used in calculating water availability for spatial planning in Indonesia. The rational method is developed mainly for estimating the characteristics of drainage infrastructure instead of estimating water availability. The effectiveness of rational method and Soil-Conservation Service Curve Number (SCS-CN) method are compared by testing their performance in estimating water availability in the Upper Cisadane river basin in West Java, Indonesia. The results shows that calibrated SCS-CN model performs better than Rational model with R2 and NSE of 0,62 and 0,37. Result of model validation yields R2 = 0,73 and NSE = 0,52. The result suggests that SCS-CN performs better than the rational model in simulating the character of water catchment area and is suitable for model of choice in water availability estimation.Keywords: Bogor City, Regional Spatial Planning, Water availability, Water Balance, Water Resource Carrying Capacity
Pemodelan Tutupan Lahan Untuk Menjamin Keberlanjutan Debit Sungai (Suatu Studi Di Sub DAS Cikapundung-Maribaya) Aditya Dwifebri Christian Wibowo; Mahawan Karuniasa; Dwita Sutjiningsih
IJEEM - Indonesian Journal of Environmental Education and Management Vol 6 No 2 (2021): IJEEM: Indonesian Journal of Environmental Education and Management Volume 6 Nomo
Publisher : Universitas Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21009/IJEEM.062.01

Abstract

Changes in land use in the Cikapundung watershed, ie changes in forest land to built-up land, have an impact on the quantity of river water. Changes in land use in the Cikapundung River catchment are not ideal conditions for absorbing water. If land conversion is not controlled, it can have a large impact on reducing the availability of water resources for subordinate areas or what is called water scarcity. Analysis that takes into account land use and discharge can be done with several hydrological analysis methods, one of them is the Soil Conservation Service Curve Number (SCS-CN) method. Based on the calculation, the CN value was changed in 2014 from 57.275 to 62.591 where land cover changes began to occur. Keywords: land use, river water, water scarcity, hydrology, CN value
Deteksi Keberadaan Air Tanah dengan Menggunakan Geolistrik Konfigurasi Schlumberger Eva Rolia; Dwita Sutjiningsih; Evi Anggraheni; Agus Surandono
Jurnal Teknik Sumber Daya Air Vol. 1 No. 1 (Juni 2021)
Publisher : Himpunan Ahli Teknik Hidraulik Indonesia (HATHI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (542.346 KB) | DOI: 10.56860/jtsda.v1i1.21

Abstract

Keberadaan air tanah perlu dikelola dengan baik secara kualitas dan kuantitasnya. Hal ini dilakukan agar sumber daya air dapat dimanfaatkan untuk memenuhi kebutuhan manusia baik secara langsung maupun tidak langsung. Penggunaan air tanah cenderung meningkat seiring dengan laju pertumbuhan penduduk, oleh karena itu perlu adanya perencanaan dan pemakaian air tanah yang bijak untuk melindungi sumber yang ada demi kelestarian sumberdaya air di Kecamatan Seputih Surabaya Kabupaten Lampung Tengah. Tujuan penelitian ini adalah untuk mendeteksi keberadaan akuifer air tanah berdasarkan jenis lapisan batuan dengan menggunakan alat geolistrik konfigurasi Schlumberger dan pemodelan dengan menggunakan software IP2Win di daerah Kecamatan Seputih Surabaya Kabupaten Lampung Tengah dengan jumlah titik pengukuran sebanyak 15 titik.Hasil penelitian menunjukkan bahwa jenis lapisan batuan yang terdapat pada daerah penelitian didominasi oleh lempung, pasir berlempung, lempung berpasir, pasir dan batuan kristalin. Dari hasil penelitian ini juga didapat bahwa akuifer air tanah rata-rata berada pada kedalaman 3,34 meter hingga 53,3 meter dari muka tanah. Jenis akuifer yang terdapat pada daerah penelitian adalah akuifer bebas dan akuifer tertekan.
Pengaruh Sebaran Spasial Hujan terhadap Pemilihan Metode Hujan Wilayah Berbasis Analisis Geospasial Evi Anggraheni; Dwita Sutjiningsih; Bambang Heri Mulyono; Guswanto; Ika Agustin Ningrum; Dadang Muhammad Yahya
Jurnal Teknik Sumber Daya Air Desember 2022
Publisher : Himpunan Ahli Teknik Hidraulik Indonesia (HATHI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56860/jtsda.v2i2.41

Abstract

Data hujan adalah salah satu komponen penting dalam kegiatan penelitian, perencanaan maupun pengelolaan sumber daya air. Pengaruh variabilitas curah hujan secara spasial dan temporal pada permodelan limpasan hujan telah lama menjadi perhatian dari ahli hidrologi dan menjadi sumber kesalahan utama pada analisis debit (Emmanuel et al 2015). Salah satu cara untuk mengakomodir sebaran secara spasial hujan adalah melakukan analisis hujan rerata wilayah. Metode yang sering dimanfaatkan dalam analisis hujan wilayah adalah Metode Rerata Aritmatik, Isohyet dan Thiessen. Tujuan dari penelitian ini adalah malakukan analisis pengaruh sebaran spasial hujan pada penentuan metode hujan wilayah Thiessen dan Isohyet di Daerah Aliran Sungai (DAS) yang masuk dalam DKI Jakarta. Analisis sebaran spasial dilakukan pada beberapa periode hujan yang terjadi pada tanggal 2 Februari 2007, 23 Februari 2014, 1 Januari 2020, dan 25 Februari 2020 di DAS tersebut. Analisis hujan wilayah Metode Thiessen dan Isohyet dipilih penelitian ini. Visualisasi dan analisis hujan wilayah dilakukan dengan bantuan Arc GIS. Pengaruh penggunaan dua metode hujan wilayah selanjutnya dianalisis dengan menggunakan analisis banjir dengan bantuan model hujan aliran WinTR 20. Berdasarkan hasil analisis diketahui bahwa pemilihan metode hujan wilayah harus dilakukan berdasarkan visualisasi distribusi hujan, jika hujan terkonsentrasi pada satu wilayah maka Metode Isohyet menghasilkan analisis yang lebih merepresentasikan kondisi aktual dengan perbedaan debit banjir yang dihasilkan dengan Metode Thiessen hingga 29%, sedangkan jika hujan tersebar merata di seluruh wilayah, maka Thiesen dan Isohyet menghasilkan perbedaan debit rencana  ≤ 5%.
Coastal and River Embankment Performance at Cengkareng Drain Estuary Under Compound Hazards Conditions Using HEC-RAS 2D Athena Hastomo; Evi Anggraheni; Adi Prasetyo; Dwita Sutjiningsih; Mochamad Adhiraga Pratama; Atina Umi Kalsum
Journal of the Civil Engineering Forum Vol. 9 No. 3 (September 2023)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.7087

Abstract

Jakarta is prone to pluvial, fluvial, and coastal flooding due to its geographical location and topography. In response to this problem, the Indonesian government has implemented several master plans, including the National Capital Integrated Coastal Development (NCICD). This ongoing program encompasses the construction of coastal and river embankment that stretch all over the coast of Jakarta. Since many coastal areas in Jakarta are residential or industrial, evaluating this performance of embankment has become crucial for effective flood management. The findings of this research can also support the development of other locations where NCICD embankment plan and enhance coastal resilience. Therefore, this research assessed the effectiveness of coastal and river embankment at Cengkareng Drain, a vital floodway in Jakarta, during extreme events that occur simultaneously. To simulate flooding events, two-dimensional HEC-RAS features were used to numerically calculate the area and depth of inundation. The simulation required geometry, terrain, land cover, and unsteady flow data. For the flow boundary conditions, a 100-year design rainfall, HHWL (Highest High Water Level), and 100-year design wave were considered to represent estuary conditions accurately. The simulation result showed that the maximum water level influenced by these factors was +3.145 mMSL, while the planned embankment top elevation was +3.40 mMSL. Furthermore, without the NCICD embankment, the simulation showed an inundation area of 1212.37 ha, which was reduced to 1111.22 ha after their implementation, leading to a decrease of 101.15 ha. This reduction significantly decreases potential damage to property and infrastructure, particularly in densely populated areas. The simulation also showed a reduction of 86.49 hectares or 66.22% in the inundation area with a depth exceeding 1 meter. These findings demonstrate the effectiveness of embankment in reducing the inundation area without any overtopping incidents.
ESTIMATION OF POTENTIAL WATER AVAILABILITY AND WATER RESOURCES CARRYING CAPACITY FOR BOGOR CITY SPATIAL PLAN Juniati, Atie Tri; Kusratmoko, Eko; Sutjiningsih, Dwita
Jurnal Geografi Lingkungan Tropik (Journal of Geography of Tropical Environments) Vol. 5, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The aim of the present research is to examine the effectiveness of rational method widely used in calculating water availability for spatial planning in Indonesia. The rational method is developed mainly for estimating the characteristics of drainage infrastructure instead of estimating water availability. The effectiveness of rational method and Soil-Conservation Service Curve Number (SCS-CN) method are compared by testing their performance in estimating water availability in the Upper Cisadane river basin in West Java, Indonesia. The results shows that calibrated SCS-CN model performs better than Rational model with R2 and NSE of 0,62 and 0,37. Result of model validation yields R2 = 0,73 and NSE = 0,52. The result suggests that SCS-CN performs better than the rational model in simulating the character of water catchment area and is suitable for model of choice in water availability estimation.