Asli Sirait
Unknown Affiliation

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS TRIDIAGONAL Sari, Nur Meliana; Gemawati, Sri; Sirait, Asli
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 2, No 1 (2015): Wisuda Februari 2015
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This article discusses how to obtain eigenvalues and their corresponding eigenvectors of tridiagonal matrices, of the form     a bca bb cb cAnnn 1121 210 00 0 000 00 0 0         where  , , b are number complex and  is mapping from a set of integer from 1 to n-1 into a nonnegative integer.
GENERALISASI METODE GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Andri Ramadhan; Syamsudhuha '; Asli Sirait
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 2 (2014): Wisuda Oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This article presents a generalized Gauss-Seidel method for solving system of linear equations. This article is a review of Salkuyeh's paper [Numerical Mathematics, A Journal of Chinese Universities, 16: 164-170, 2007]. Some examples are presented at the end of discussion.
MATRIKS REFLEKSIF TERGENERALISASI Hendra Maryulis; Sri Gemawati; Asli Sirait
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 2, No 1 (2015): Wisuda Februari 2015
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In this article we discusses a generalized reflexive matrix A that has a relation PAQ A  and , PAQ A   , m n C A   where , n n C P   and m m C Q   are two generalized reflection  matrices. The  discussion was continued by discussing the properties of generalized reflexive matrix, namely orthogonal-L, orthogonal-R and the linear least squares problems whose coefficient matrix is of the form a generalized reflexive matrix.
MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE Rini Pratiwi; Rolan Pane; Asli Sirait
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 2 (2014): Wisuda Oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This paper discusses an algorithm to determine the power of a square matrix, A , without computing its eigenvalues.  The algorithm can be used to compute  An, for each real number n  which is greater or equal to two.
PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN GENERALISASI METODE JACOBI Sandra Roza; M. Natsir; Asli Sirait
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 2 (2014): Wisuda Oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Jacobi's method is an iterative method to solve a system of linear equations Ax = b.  If A is a strictly diagonally dominant matrix, Jacobi's method always converges to a solution Ax = b. In this paper,we develop the generalized Jacobi'smethod; by changing, one of the splitting matrices has to be in the form of a bandage diagonal matrix. By assumption that A is a strictly diagonally dominant matrix, we show that the generalized Jacobi's method is always convergent to a solution Ax = b.
DIAGRAM DARI PRESENTASI SEMIGRUP 〈"a,b | " "a" ^"3" "=a," "b" ^"3" "=b,a" "b" ^"2" "=b" "a" ^"2" 〉 dan 〈"a,b | " "a" ^"5" "=a," "b" ^"5" "=b,a" "b" ^"2" "=b" "a" ^"2" 〉 Wellya Aziz; Sri Gemawati; Asli Sirait
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 2 (2014): Wisuda Oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In this article we discuss the diagram forms of semigroup presentations    and . The discussion starts with the word-word outlines of semigroup presentations  and . Then it is proceeded to make a diagram of word-word description obtained. All of characteristics are expressed in the form of a semigroup diagram theorem. The discussion in this article refers to Guba, V.  & M. Sapir.  1996.  Diagram Groups and Robertson, E. F. & Y. Unlu. 1992. Proceedings of the Edinburgh Mathematical Society 36: 55 – 68.