Agus Subekti
Balai Pengkajian Teknologi Pertanian Kalimantan Barat Jalan Budi Utomo No. 45, Siantan Hulu, Kotak Pos 6150, Pontianak 78061, Kalimantan Barat, Indonesia

Published : 8 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : JURNAL MEDIA INFORMATIKA BUDIDARMA

Penerapan Algoritma Random Forest dengan Kombinasi Ekstraksi Fitur Untuk Klasifikasi Penyakit Daun Tomat Khultsum, Umi; Subekti, Agus
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 5, No 1 (2021): Januari 2021
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v5i1.2624

Abstract

The tomato plant is widely consumed by the community and is widely cultivated by farmers. Tomato plants are susceptible to disease attacks. Plant diseases cause a decrease in the quality and quantity of crops or agricultural produce. The idea of the 4.0 agricultural revolution emerged as a result of the 4.0 industrial revolution. Farmers are not ready to face increasingly rapid technological advances. It is important to identify the disease in tomato leaves correctly in the efficiency of disease management for efforts to control so that disease in tomato leaves does not develop. The main objective of the proposed method is to develop a technique for identifying foliar diseases in tomato plants by increasing the classification accuracy. The novelty of this research is a combination of several feature extractions to improve classification accuracy. The features used are the color feature, the Hu-Moment feature, and the firur haralick. In the classification process, the Random Forest algorithm and other classification algorithms are applied for comparison. In this study, the Random Forest method and the combination of extraction features have shown an increase in accuracy, the accuracy obtained is 96%.