Claim Missing Document
Check
Articles

Found 4 Documents
Search

Alkaline Pretreatment of Sweet Sorghum Bagasse for Bioethanol Production Sudiyani, Yanni; Triwahyuni, Eka; Muryanto, Muryanto; Burhani, Dian; Waluyo, Joko; Sulaswaty, Anny; Abimanyu, Haznan
International Journal of Renewable Energy Development Vol 5, No 2 (2016): July 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.2.113-118

Abstract

Lignocellulosic material, which consist mainly of cellulose, hemicelluloses and lignin, are among the most promising renewable feedstocks for the production of energy and chemicals.   The bagasse residue of sweet sorghum can be utilized as raw material for alternative energy such as bioethanol.  Bioethanol production consists of pretreatment, saccharification, fermentation and purification process.  The pretreatment process was of great importance to ethanol yield.  In the present study, alkaline pretreatment was conducted using a steam explosion reactor at 1300C with concentrations of NaOH  6, and 10% (kg/L) for 10, and 30 min.  For ethanol production separated hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) process were conducted with 30 FPU of Ctec2 and Htec2 enzyme and yeast of Saccharomyces cerevisiae.   The results showed that maximum cellulose conversion to total glucose plus xylose were showed greatest with NaOH 10% for 30 min.  The highest yield of ethanol is 96.26% and high concentration of ethanol 66.88 g/L were obtained at SSF condition during 48 h process. Using SSF process could increase yields and concentration of ethanol with less energy process. Article History: Received January 16th 2016; Received in revised form May 25th 2016; Accepted June 28th 2016; Available onlineHow to Cite This Article: Sudiyani, Y., Triwahyuni, E., Muryanto, Burhani, D., Waluyo, J. Sulaswaty, A. and Abimanyu, H. (2016) Alkaline Pretreatment of Sweet Sorghum Bagasse for Bioethanol Production. Int. Journal of Renewable Energy Development, 5(2), 113-118.http://dx.doi.org/10.14710/ijred.5.2.113-118 
Telaah Potensi Penerapan Teknologi Terkini pada Hidrolisis Selulosa dengan Sistem Pengendalian Terintegrasi dalam Proses Bioetanol G2 Ditia, Anissa; Bardant, Teuku Beuna; Utami, Amaliyah Rohsari Indah; Maryana, Roni; Irawan, Yan; Muryanto, Muryanto; Triwahyuni, Eka; Sudiyani, Yanni
JURNAL SELULOSA Vol 11, No 01 (2021): JURNAL SELULOSA
Publisher : Center for Pulp and Paper

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25269/jsel.v11i01.320

Abstract

Kajian ini merangkum teknologi dan inovasi sistem pengendalian yang berpotensi diterapkan dalam intensifikasi proses hidrolisis selulosa pada produksi bioetanol G2. Telaah dimulai dari perkembangan terbaru intensifikasi produksi bioetanol secara umum. Hidrolisis selulosa adalah tahapan pembeda antara proses bioetanol G2 dan generasi sebelumnya. Perhatian utama dalam intensifikasi hidrolisis selulosa adalah pada bagaimana hidrolisis selulosa terintegrasi dengan sistem pengendalinya dan integrasi hidrolisis selulosa dengan bagian hulu (pretreatment) dan hilir (penyulingan). Keunikan proses ini adalah durasi kerja yang membutuhkan 48 jam dan viskositas campuran yang tergantung waktu. Bagian akhir telaah ini memetakan potensi penerapan teknologi dan inovasi terbaru yang telah dirangkum. Pemetaan berdasarkan potensi peningkatan efisiensi dan potensi tambahan investasi. Sakarifikasi Very High Gravity (VHG) pada kecepatan pengadukan optimum dan intermitten dinilai sebagai pilihan paling menarik bila intensifikasi dilakukan pada unit produksi yang telah berdiri. Namun jika intensifikasi untuk rancangan pabrik baru, maka tangki hidrolisis yang dirancang dengan simulasi CFD, dilengkapi dengan sekat (baffles) yang bergerak terkendali, dan rancangan batang pengaduk (impeller) paling cocok menurut simulasi adalah pilihan menarik. Rancangan ini kemudian diintegrasikan dengan sistem pengendali yang mampu memperkirakan perubahan viskositas. Review on Potency of Application Recent Technology in the Integrated Process and Control on Cellulose Hydrolysis in Bioethanol G2 Production ProcessAbstractThis review listed current technologies and innovations in the control system which potentially applied in the intensification of cellulose hydrolysis as part of 2nd Generation Bioethanol production process. The review started from the general latest innovations in the 2nd Generation Bioethanol. Cellulose hydrolysis as the main characteristics in the 2nd Generation of Bioethanol required further attention in the intensification. Especially in how to integrate cellulose hydrolysis with its control system and to integrate it with upstream and downstream units. The special requirements in cellulose hydrolysis are 48 hours agitation duration and time-dependent mixture viscosity. At the end of the review, listed technologies were assessed to be applied in the 2nd Generation Bioethanol. The assessment was based on their potency in increasing process efficiency and the potency of required investment if they are applied. A Very High Gravity (VHG) saccharification at optimum intermittent agitation speed was a promising innovation for cellulose hydrolysis if intensification was conducted onto the existing production plant. If intensification is conducted to a plant design, building an agitation tank according to best Computational Fluid Dynamic (CFD) simulation, complemented with controlled moving baffles and best suitable impeller design is a promising design for efficient hydrolysis. This agitation tank was then completed with the advanced available control system, which is capable to adapt the viscosity changes.
Biological Pretreatment of Oil Palm Frond Fiber Using White-Rot Fungi for Enzymatic Saccharification Hermiati, Euis; Anita, Sita Heris; Risanto, Lucky; Styarini, Dyah; Sudiyani, Yanni; Hanafi, Achmad; Abimanyu, Haznan
Makara Journal of Technology Vol. 17, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Oil palm frond is one type of lignocellulosic biomass abundantly and daily available in Indonesia. It contains cellulose which can be converted to glucose, and further processed to produce different kinds of value –added products. The aim of this research is to study the effects of biological pretreatment of oil palm frond (OPF) fiber using Phanerochaete chrysosporium and Trametes versicolor on the enzymatic saccharification of the biomass. The OPF fiber (40-60 mesh sizes) was inoculated with cultures of the two fungi and incubated at 27 °C for 4 weeks. The samples were taken after 1, 2, 3, and 4 weeks of incubation. Chemical components of the biomass after pretreatment were analyzed. The saccharification of the pretreated samples using cellulase and β-glucosidase was performed in a water bath shaker at 50 °C for 48 hours. The concentration of reducing sugar increased with increasing of incubation time, either in those pretreated with culture of P. chrysosporium or with T. versicolor. Pretreatment of OPF fiber using single culture of T. versicolor for 4 weeks gave the highest reducing sugar yield (12.61% of dry biomass).
Properties of Lignin from Oil Palm Empty Fruit Bunch and Its Application for Plywood Adhesive Risanto, Lucky; Hermiati, Euis; Sudiyani, Yanni
Makara Journal of Technology Vol. 18, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Lignin from lignocellulosic biomass is a potential biopolymer for wood adhesive. The aims of this study were to characterize lignin isolated from the black liquor of oil palm empty fruit bunch fiber pretreated with steam explosion in alkaline conditions and to examine the bond quality of aqueous polymer isocyanate (API) adhesive prepared from lignin, natural rubber latex (NRL), and polyvinyl alcohol (PVA) as base polymers with isocyanate crosslinkers. Lignin was precipitated from the black liquor by adding hydrochloric acid; then the precipitate was separated by filtration, thoroughly washed with water up to pH 2 and pH 5, and dried. The isolated lignin was characterized by ultimate analysis, UV spectroscopy, FT-IR spectroscopy, and thermal analysis. Three-layer plywood samples were prepared, and the bond strengths of the plywood samples were determined in dry conditions and after cyclic boiling. The lignin isolates with different pH values did not have significantly different chemical and thermal properties. Both lignin isolates had similar C, H, and O contents, identical functional groups in the FTIR spectra, similar absorption in the UV spectra, and high decomposition temperatures. The base polymers composition that could produce API adhesive for exterior applications was NRL/PVA/lignin (4/4/2). The use of more lignin in the adhesive formulation decreased the bond strength of the plywood.