Claim Missing Document
Check
Articles

Found 6 Documents
Search
Journal : Jurnal Eurekamatika

APLIKASI MULTIVARIATE GEOGRAPHICALLY WEIGHTED REGRESSION MENGGUNAKAN SOFTWARE MATLAB Andini, Puty; Herrhyanto, Nar; Suherman, Maman
Jurnal EurekaMatika Vol 5, No 1 (2017): Jurnal EurekaMatika
Publisher : Mathematics Program Study, Universitas Pendidikan Indonesia (UPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (463.105 KB) | DOI: 10.17509/jem.v5i1.10311

Abstract

ABSTRAK: Persamaan regresi dapat diterapkan pada kasus derajat kesehatan masyarakat. Indikator derajat kesehatan yang dalam penulisan ini adalah angka harapan hidup dan persentase gizi buruk balita. Jika persamaan mengandung unsur spasial maka tidak bisa di selesaikan menggunakan regresi global karena akan menyebabkan kesimpulan yang diambil kurang tepat. Keragaman spasial akibat faktor geografis dapat diselasaikan dengan pendekatan titik. Pendekatan titik yang digunakan dalam penulisan ini adalah Multivariate Geographically Weighted Regression (MGWR). Menggunakan dua variabel respon, yaitu angka harapan hidup (Y1) dan persentase gizi buruk balita (Y2) dan enam variabel prediktor, yaitu angka melek huruf (X1), rata-rata lama sekolah (X2) Indeks kesejahteraan rakyat (X3), persentase Penduduk dengan sumber air minum PDAM/pipa (X4), persentase penduduk dengan jarak sumber air minum ke tempat penampungan kotoran 10 meter (X5), dan pengeluaran perkapita penduduk untuk makan (X6). Dalam model MGWR penaksiran parameter diperoleh dengan menggunakan Weighted Least Square (WLS). Fungsi pembobotan yang digunakan fixed kernel Gaussian. Penelitian ini membuat model  derajat kesehatan dengan metode MGWR menggunakan software Matlab dan membuat peta sebaran kabupaten dan kota di Jawa Barat berdasarkan variabel-variabel yang signifikan terhadap derajat kesehatan. Variabel yang di duga mempengaruhi angka harapan hidup (Y1) adalah rata-rata lama sekolah (X2) dan variabel yang di duga mempengaruhi persentase gizi buruk balita (Y2) adalah Angka Melek Huruf (X1). Kata Kunci: Derajat Kesehatan, Multivariate Geographically Weighted Regression (MGWR)   ABSTRACT: The regression equation can be applied in cases of public health degree. Indicators of health, which in this paper are the life expectancy and the percentage of malnourished children under five years old. If the equation contains spatial element it can not be resolved using the global regression because it would lead to inaccurate conclusions drawn. Spatial heterogeneity due to geographical factors can be solved approach point. Point approach used in this paper is Multivariate Geographically Weighted Regression (MGWR) with two response variables, namely life expectancy (Y1) and the percentage of malnourished children under five (Y2) and six predictor variables, ie the literacy rate (X1), the mean the duration of schooling (X2) Index welfare of the people (X3), the percentage of residents with drinking water taps / plumbing (X4), the percentage of people with a distance of drinking water source to the septic tank of 10 meters (X5), and spending per capita for the population to eat (X6). In the model parameter estimation MGWR obtained by using Weighted Least Square (WLS). Weighting function used fixed kernel Gaussian. This study makes a model using methods MGWR health status with Matlab Software and create distribution maps districts / cities in West Java based on the variables that significantly influence health status. Variables are assumed to affect life expectancy (Y1) is the average length of the school (X2) and the variables that presumably affect the percentage of malnourished children under five (Y2) is ie the literacy rate (X1). Keywords: Health Status, Multivariate Geographically Weighted Regression (MGWR)
APLIKASI MODEL GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) UNTUK MENENTUKAN FAKTOR-FAKTOR YANG MEMPENGARUHI KASUS GIZI BURUK ANAK BALITA DI JAWA BARAT Maulani, Atiya; Herrhyanto, Nar; Suherman, Maman
Jurnal EurekaMatika Vol 4, No 1 (2016): Jurnal EurekaMatika
Publisher : Mathematics Program Study, Universitas Pendidikan Indonesia (UPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (502.505 KB) | DOI: 10.17509/jem.v4i1.10454

Abstract

ABSTRAK. Model regresi linear klasik atau Ordinary Linear Regression (OLR) merupakan bentuk regresi yang umum digunakan untuk menyatakan bentuk hubungan antara variabel respon dengan varabel prediktornya. Regresi linear klasik mengasumsikan bahwa nilai taksiran parameter regresi akan bernilai sama untuk setiap lokasi pen gamatan atau berlaku secara global. Model Geographically Weighted Regression (GWR) adalah bentuk lokal dari regresi linear klasik yang memperhatikan aspek spasial atau lokasi geografis yang berupa koordinat titik  Dalam GWR, nilai taksiran parameter regresi yang diperoleh untuk setiap lokasi pengamatan akan berbeda-beda. Penelitian ini bertujuan untuk mengatahui faktor-faktor yang mempengaruhi kasus gizi buruk anak balita di Jawa Barat dengan menggunakan GWR. Hasil pengujian terhadap model regresi linear berganda menunjukkan bahwa asumsi homogenitas varians tidak terpenuhi atau terjadi heterogenitas spasial, dan model regresi linear berganda yang diperoleh tidak berarti secara signifikan. Sehingga, analisis dilanjutkan dengan menggunakan GWR dengan pembobot fixed Kernel Gaussian dan GWR dengan pembobot adaptive Kernel Gaussian. Berdasarkan nilai  dan jumlah kuadrat residual  model GWR dengan pembobot adaptive Kernel Gaussian lebih cocok digunakan untuk memodelkan kasus gizi buruk anak balita di Jawa Barat. Model GWR dengan pembobot adaptive Kernel Gaussian, menghasilkan  paling besar dibandingkan model regresi linear berganda dan model GWR dengan pembobot fixed Kernel Gaussian, yaitu  atau , dan  yang paling kecil, yaitu . Faktor geografis juga berpengaruh terhadap kasus gizi buruk anak balita di Jawa Barat sehingga akan diperoleh model GWR berbeda-beda untuk setiap kota/kabupaten di Jawa Barat. Adapun faktor-faktor lokal yang mempengaruhi kasus gizi buruk anak balita di Jawa Barat adalah kasus bayi dengan berat badan lahir rendah (BBLR), anak balita mendapat vitamin A, sarana kesehatan, bayi yang diberi ASI eksklusif, penduduk miskin, dan usia perkawinan pertama ≤ 15 tahun.Kata Kunci : Geographically Weighted Regression, Pembobot, Gizi BurukABSTRACT. Ordinary Linear Regression (OLR) model is a form of regression that used to indicate the relationship between the response variable with the predictor variable. Classical linear regression assumes that the value of the regression parameter estimates will have the same value for each observation or apply globally. Geographically Weighted Regression (GWR) model is the local form of the classical linear regression model that takes into account aspects of the spatial or geographic coordinates of a point  In GWR, the estimated value of the regression parameters will vary for each location. This study aims to know the factors that affect malnutrition of toodler in West Java by using GWR. The test results of the multiple linear regression model showed that the assumption of varians homogeneity is not significant or there is spatial heterogeneity, and multiple linear regression models were not significant. Thus, the analysis continued using a GWR with weighted fixed Kenel Gaussian and GWR with adaptive weighted Kernel Gaussian. Based on the value of coefficient determination  and sum of squared residuals, GWR models with adaptive weighted Kernel Gaussian is suitable for modeling the malnutrition of toodler in West Java. GWR models with adaptive weighted kernel Gaussian has an  value that greater than the multiple linear regression model and GWR models with fixed weighting kernel Gaussian, 0.8994658 or 89.95%, and JK (S) is the smallest, 0.2555239. Geographical factors also affect the cases of malnutrition of toodler in West Java that would be obtained GWR models vary according to each city/district in West Java. The local factors affecting malnutrition of toodler in West Java is the case of infants with low birth weight (LBW), infants received vitamin A, health facilities, exclusively breast-fed babies, poverty, and the age of first marriage ≤ 15 years.Key words: Geographically Weighted Regression, Weighting, Malnutrition
PENGGUNAAN REGRESI AKAR LATEN UNTUK MEMPREDIKSI PENJUALAN MOBIL DI AMERIKA SERIKAT TAHUN 1961-1990 Purwanto, Edi; Herrhyanto, Nar; Suherman, Maman
Jurnal EurekaMatika Vol 2, No 1 (2014): Jurnal EurekaMatika
Publisher : Mathematics Program Study, Universitas Pendidikan Indonesia (UPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (316.41 KB) | DOI: 10.17509/jem.v2i1.11241

Abstract

ABSTRAK:Variabel tak bebas tidak hanya cukup dipengaruhi oleh satu variabel bebas dalam analisis regresi. Semakin banyak variabel bebas yang dilibatkan pada analisis regresi semakin baik pula untuk menaksir variabel tak bebasnya. Akan tetapi, hal ini juga menyebabkan peluang terjadinya multikolinearitas akan semakin besar. Regresi akar laten merupakan salah satu analisis regresi di mana terjadi hubungan di antara variabel-variabel bebasnya. Regresi akar laten akan menggunakan akar laten  (nilai eigen) dan vektor laten (vektor eigen) yang diperoleh dari matriks yang entri-entrinya merupakan variabel bebas dan variabel tak bebas untuk membentuk persamaan regresi. Kata kunci : multikolinearitas, nilai eigen, vektor eigen, regresi akar laten. ABSTRACT: Dependent variableis notonlysufficientlyinfluencedbyanindependent variablein the regression analysis. The moreindependent variableswere includedin theregressionanalysisto estimatethe greater theindependentvariable. However, this is alsocausingthe possibility ofmulticollinearitywill be greater. latentrootregressionis one of theregressionanalysiswhere there isa relationshipbetweenthe independent variables. Latentrootregressionwilluse thelatentroots(eigenvalues) andlatentvectors(eigenvectors) areobtainedfrom thematrixwhose entriesareindependent variablesand thedependent variabletoestablish the regression equation.
APLIKASI MODEL ANTRIAN MULTISERVER DENGAN VACATION PADA SISTEM ANTRIAN DI BANK BCA CABANG UJUNG BERUNG Elyzabeth, Elyzabeth; Suherman, Maman; Marwati, Rini
Jurnal EurekaMatika Vol 3, No 1 (2015): Jurnal EurekaMatika
Publisher : Mathematics Program Study, Universitas Pendidikan Indonesia (UPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (362.913 KB) | DOI: 10.17509/jem.v3i1.11195

Abstract

ABSTRAK  Antrian merupakan kegiatan yang sering dijumpai dalam kehidupan sehari-hari. Pelaku utama dalam antrian adalah customer yang membutuhkan pelayanan serta server yang memberikan pelayanan. Sistem antrian dengan laju kedatangan dan pelayanan yang berdistribusi Poisson dan waktu pelayanan yang berdistribusi Eksponensial dilambangkan dengan M/M/c, dimana c adalah banyaknya server. Vacation pada sistem antrian adalah waktu tunda server melayani customer dalam waktu tertentu saat jam operasional. Sistem antrian dengan laju kedatangan dan laju pelayanan yang berdistribusi Poisson serta waktu pelayanan dan waktu vacation yang berdistribusi Eksponensial dimana server yang ada lebih dari satu dan server tidak secara serentak melakukan vacation disebut dengan Asynchronous Multiple Vacation Model (M/M/c (AS, MV)). Berdasarkan studi kasus yang dilakukan di Bank BCA Cabang Ujung Berung dimana pengamatan dipusatkan pada antrian untuk transaksi tunai di atas 10 juta rupiah, dengan banyaknya server sebanyak 3 orang maka model antriannya menjadi (M/M/3 (AS, SV)) dan diperoleh laju kedatangan (λ) 24 orang per jam dan laju pelayanan () 13 orang per jam serta Ekspektasi banyaknya customer dalam antrian ( 4 orang dan Ekspektasi waktu menunggu customer dalam sistem ( 10 menit.Kata kunci: Antrian, Customer, Multiserver, Vacation ABSTRACT  Queuing is the most likely happensin daily life. Those who queue are customers who need service and server that gives service. Queuing system due to arrival and service rate which distribute in Poisson and service time which distributes in Exponensial are symbolized M/M/c, in which c is the quantity of server. Vacation on queuing system is the duration which server delays to serve the customers at a certain time during operational hour. Queuing system due to arrival and service rate which distribute in Poisson along with service and vacation time which distributes in Exponensial which has more than one server and it doesn’t do vacation at the same time is called Asynchronous Multiple Vacation Model (M/M/c (AS, MV)). Based on study which is done in BCA Ujung Berung, we focus on queuing for cash transaction of 10 million rupiahs above, whereas there are three servers and we pay attention to the vacation queuing model which becomes (M/M/3 (AS, MV)) and results arrival rate ( 24 people per hour and service rate ( 13 people per hour and expectation on the quantity of customer in the queue () 4 people and expectation of customer’s queuing time ()10 minutes.Key words: Queuing, Customer, Multiserver, Vacation
PENGUKURAN RISIKO KREDIT OBLIGASI PENDEKATAN FIRST PASSAGE TIME DAN OPTIMISASI PORTOFOLIO DENGAN MEAN VARIANCE EFFICIENT PORTFOLIO Alfiyyati, Lydia Zayyani; Suherman, Maman; Puspita, Entit
Jurnal EurekaMatika Vol 4, No 1 (2016): Jurnal EurekaMatika
Publisher : Mathematics Program Study, Universitas Pendidikan Indonesia (UPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (264.081 KB) | DOI: 10.17509/jem.v4i1.10648

Abstract

ABSTRAK. Cara seorang investor mengambil keputusan berinvestasi adalah dengan mempertimbangkan risiko yang mungkin terjadi dan expected return yang diinginkan, seperti halnya berinvestasi pada obligasi. Risiko kredit merupakan ketidakmapuan pihak peminjam untuk membayar lagi bunga dan kewajibannya terhadap investor atau disebut juga default. Model First Passage Time yang merupakan perkembangan dari model Merton pada tahun 1976 oleh Black dan Cox mengasumsikan bahwa default dari suatu perusahaan dapat terjadi sebelum jatuh tempo obligasi. Contoh kasus untuk mengaplikasikan pendekatan ini adalah dengan menghitung risiko kredit dari obligasi yang diterbitkan oleh PT Summarecon Agung dan PT Indosat dengan data yang diperoleh dari Indonesia Bond Pricing Agency (IBPA). Nilai yang menjadi indikator bahwa kedua perusahaan tersebut default adalah face value dari masing-masing obligasi, artinya ketika face value obligasi PT Summarecon Agung Rp150000000000,00, perusahaan tersebut default jika total asetnya jatuh di bawah nilai tersebut. Hasil pengolahan data yang dilakukan memberikan hasil peluang default dari kedua perusahaan mendekati nol yang mengimplikasikan bahwa cukup aman berinvestasi pada obligasi tersebut. Saat investor ingin menggabungkan kedua obligasi dengan membentuk sebuah portofolio agar risiko minimum dan memperoleh expected return yang diinginkan, Mean Variance Efficient Portfolio dapat dijadikan alternatif optimisasi portofolio. Hasil dari MVEP menunjukkan proporsi obligasi PT Summarecon Agung adalah 38,79% dan 61,21% untuk obligasi PT Indosat.Kata kunci : Risiko Kredit, Manajemen Risiko, First Passage Time, Mean Variance Efficient Portfolio.ABSTRACT. How an investor making an investment decision is to consider the potential risks and desired expected return , as well as investing in bonds. Credit risk is the inability of the borrower to pay interest and obligations to investors or also called default. First Passage Time Model, which is the development of Merton model in 1976 by Black and Cox assuming that the default of a company may occur prior to maturity of the bonds. The case to apply this approach is to calculate the credit risk of bonds issued by PT Summarecon Agung and PT Indosat with data obtained from Indonesia Bond Pricing Agency (IBPA). The values which refer to indicator that both companies default is the face value of each bond,  that is when the face value of bonds PT Summarecon Agung Rp150000000000,00, the company declared to be default if the total asset falls below that value. The results of data processing is done and giving the result that default probability of both companies close to zero which implies that it is safe enough to invest in bonds. If the investor wants to combine the two bonds in a bond portfolio in order to obtain a minimal risk and desired expected return, Mean Variance Efficient Portfolio can be used as an alternative of portfolio optimization. Results of MVEP shows the proportion of  the bond of PT Summarecon Agung was 38.79% and 61.21% for the bond of PT Indosat.Keywords: Credit Risk, Management Risk, First Passage Time, Mean Variance Efficient Portfolio.
MARKOV SWITCHING AUTOREGRESSIVE Rahman, Jaelani; Puspita, Entit; Suherman, Maman
Jurnal EurekaMatika Vol 2, No 1 (2014): Jurnal EurekaMatika
Publisher : Mathematics Program Study, Universitas Pendidikan Indonesia (UPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (323.447 KB) | DOI: 10.17509/jem.v2i1.11270

Abstract

Runtun waktu ialah himpunan observasi yang dicatat berurut berdasarkan waktu. Tujuan dari metode runtun waktu ialah menemukan model yang sesuai sehingga didapatkan hasil peramalan yang baik. Salah satu model runtun waktu yang telah dikenal adalah Autoregressive. Pada data ekonomi sering terjadi perubahan struktur yang di akibatkan oleh perubahan kebijakan pemerintah, krisis ekonomi, perang dan model Autoregressive belum mampu menjelaskan perubahan struktur tersebut. Perubahan struktur biasanya ditandai dengan adanya perubahan dramatis. Markov Switching Autoregressive adalah salah satu model yang dapat digunakan jika pada data ditemui adanya perubahan struktur. Model dengan perubahan struktur ialah model dengan parameter yang berubah-ubah dalam periode waktu tertentu. Ide dasar dari Markov Switching Autoregressive ialah membuat model yang dinamis seiring dengan berubahnya data. Perubahan yang terjadi pada data seringkali dipengaruhi faktor-faktor yang tidak dapat diamati secara langsung. Markov Switching Autoregressive adalah salah satu model alternatif untuk memodelkan data yang dipengaruhi variabel tidak teramati. Dalam literatur variabel tidak teramati tersebut disebut state atau disimbolkan dengan , dimana  mengikuti rantai Markov. Nilai tukar rupiah terhadap dollar mengalami perubahan dramatis pada periode 1997-1998 dan perubahan tersebut dapat terjadi kembali di masa yang akan datang. Penyebab terjadinya perubahan pada nilai tukar tersebut juga seringkali tidak dapat diamati secara langsung. Estimasi parameter dengan menggunakan maksimum likelihood dan perhitungannya menggunakan algoritma Expectation Maximization. Dalam pendugaan parameter menggunakan software Eviews dan Oxmetrics 7. Chow test menangkap adanya perubahan struktur pada data nilai tukar dollar terhadap rupiah November 1995 sampai Maret 2015 dan model yang sesuai adalah MSAR(3,1).Kata kunci: runtun waktu, Autoregressive, perubahan struktur, Markov Switching Autoregressive