Djoko Sulistyo
Fakultas Teknik Sipil dan Lingkungan - Universitas Gadjah Mada.

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Semesta Teknika

Perilaku Geser pada Keadaan Layan dan Batas Balok Beton Bertulang Berlubang Memanjang Krasna, Wiku A; Sulistyo, Djoko; Supriyadi, Bambang
Jurnal Semesta Teknika Vol 13, No 2 (2010): NOVEMBER 2010
Publisher : Jurnal Semesta Teknika

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

I cross-section of reinforced concrete reduces weight and concrete needs, but the reduction in strength is not considerably large. In addition, I section reinforced concrete beam is relatively complicated and takes much longer time for manufacturing. Another geometric cross-section which results in equivalent weight reduction with that of I cross-section concrete beam may be hollow square crosssections of reinforced concrete beams. This research was conducted to identify and compare the behavior of the shear and dynamic effects of hollow core reinforced concrete beam with an I cross-section beam that equivalent with its. The specimens being tested were four reinforced concrete beams, of 2000 mm length, consisted of a T beam with bottom flange as control beam (BK) possessing dimensions of bfa = 600 mm, bw = 125 mm, bfb = 200 mm, h = 300 mm, tf = 100 mm, and three hollow core T beams as tested beam (BB1, BB2 and BB3) possessing dimensions of bf = 600 mm, bw = 200 mm, blubang = 75 mm h = 300 mm, tf = 100 mm. Static loading was applied by means of a hydraulic jack in a four-point loading system, were. Dynamic loading test was carried out by vibrating the beams to obtain the natural frequency, where the vibrating load were produced by a mechanical vibrator. Whilst the data on the static load carrying capacity was recorded at the first crack and at each initial additional crack until the ultimate fracture, those on dynamic loading was recorded on the solid block, at the first crack and at yield. The parameters being used was the magnitude of deflection, strain of the reinforcing steel and concrete, crack pattern and natural frequency. It can be concluded that the hollow core reinforced concrete beam can be used as an alternative to I section reinforced concrete beam. It was noticed that the difference in shear load carrying capacity between control beam (BK) and hollow beam (BB) was not considerably significant, where the difference between BK (299.3 kN) and BB1 (337.6 kN) is 12.79%, that with BB2 (350, 6 kN) or 17.14%, and that with BB3 (289.4 kN) or −3.31%. The natural frequency of BK is 58.594 Hz, 15.769% larger than the natural frequency of BB3 with 49.354 Hz. The natural frequencies of tested beam decreased with the increased of damage to the beam.
Analisis Lentur Balok Penampang T Berlubang Memanjang Menggunakan Metode Elemen Hingga Non-linier Sukarno, Praganif; ".", Muslikh; Sulistyo, Djoko
Jurnal Semesta Teknika Vol 14, No 1 (2011): MEI 2011
Publisher : Jurnal Semesta Teknika

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Numerical analysis is a time-, cost- and equipment-effective method to study the behavior of structures. ATENA is one of the available software-based on finite element method. Hollow cross section is one way to reduce the weight of concrete beam. The effect of holes on beam may reduce the bending resistance. The hollow beam was numerically modeled which and subsequently analyzed using the ATENA v.2.10 software. Material parameters being used as input data was obtained from laboratory tests, assuming that steel-concrete bond was prefect, and and the steel reinforcement was modeled as discrete. The results of numerical analysis of the ATENA were then compared with experimental test results on the flexural behavior and serviceability limit state of reinforced concrete hollow beams lengthwise (Amir, 2010), then study the variation of quality parameters of concrete and the hole size variations. The results shows that the collapse load of hollow beam reached only 96.71% and deflection reached 135.96%. Stiffness of hollow concrete beam was also showed a higher stiffness of the experiment. The crack pattern is flexural fracture and very much agree with that of the experiments. Test parameters of concrete quality variations as well as the hole size variation showed higher concrete quality/size of the hole will reduce the ductility of beam.