Supandi Suminta
Center for Technology of Nuclear Industry Material (PTBIN)-BATAN Kawasan Puspiptek Serpong 15314, Tangerang

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search

THE REFINEMET OF FRAMEWORK STRUCTURES OF NATURAL MORDENITE AND CLINOPTILOLITE CRYSTALS USING RIETVELD METHOD Suminta, Supandi
Jurnal Zeolit Indonesia Vol 4, No 2 (2005)
Publisher : Jurnal Zeolit Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (127.253 KB)

Abstract

Framework structures of clinoptilolite and mordenite phases in natural zeolit from Bayah have been succesfully analysed using Rietveld Method. The diffraction intensity data were collected using X-Ray Difractometer (XRD) at P3IB-BATAN. The refinement of the clinoptilolite and mordenite phases have been carried out and the results show that there are poly cation K-Mg clinoptilolite phase, with space group symmetry of C2/m No.12, monoclinic crystal system and poly cation Ca-Na mordenite phase, with space group symmetry of Cmcm No.63, orthorombic crystal system. Chemical formulas of clinoptilolite and mordenite phases are (K5,17 Mg0,16) (Al6Si30O72). 24H2O and [(Na 5,63 Ca 1,13) (Al8Si40O96). 22H2O per unit cell respectively. Fitting quality (goodness-of-fit) gave a value of Rwp = 10,34%.
SIMULATION OF X-RAY DIFFRACTION PATTERN OF A VARIOUS KINDS OF NATURAL ZEOLITE CRYSTAL USING RIETAN PROGRAM Suminta, Supandi
Jurnal Zeolit Indonesia Vol 2, No 1 (2003)
Publisher : Jurnal Zeolit Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (86.705 KB)

Abstract

The simulation analysis of natural zeolite crystal structure have been carried out using RIETAN program. The simulation results provide diffraction pattern of some crystal structure data representing as zeolite materials. There are two sets of input data : First Global parameter : a. parameter to correct the zero-point shift of the diffraction pattern : zero-point error,Z, b. parameter to calculate the background : background parameters. Second : Phase-dependent parameters : a. parameter to adjust integrated intensities :scale factor,S, b. prefered orientation parameters, c. profile parameters :FWHM parameters,d parameters to determine peak position : lattice parameters and e.crystal structure parameters: fractional coordinates. The output data contain some information such as:profile diffraction pattern, R factor, final adjusted parameters and their estimated standard deviations, lattice parameters and unit cell volume, structure parameters, number and weight of each species in the unit cell and density,and summary of reflection such as : hkl, 2 theta, d, observation intensity, calculated intensities and structure factors. These output data provide diffraction patterns for some zeolite phases, i.e. : clinoptilolite, heulandite, mordenite, analcime, phillipsite, chabazite and erionite. Results show that was significant and the application can be used for all kind of zeolites and other crystal materials in general applications. The program can be applied easily and the resulting patterns represent all phases significandly. RIETAN simulation program is expected to help hope that helpful suggestion for all people who are identification and characterisation of zeolites qualitatively.
CHARACTERIZATION OF NATURAL ZEOLITE BY X-RAY DIFFRACTOMETER Suminta, Supandi
Jurnal Zeolit Indonesia Vol 5, No 2 (2006)
Publisher : Jurnal Zeolit Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (302.142 KB)

Abstract

An identification of framework mineral structure of natural zeolit Bayah, Lampung and Malang was carried out by Reitveld methods. X ray diffraction intensity of Natural zeolit was measured by an X-Ray Diffractometer (XRD). The refinement of Clinoptilolite and Mordenite phases have been carried out and the results of refinement show that in Bayah and Lampung were Clinoptilolite phase ( space group C2/m No.12, Bravais lattice is Base-Centered and crystal system is monoclinic) and lattice parameter are a = 17,69(2) Å, b = 17,92(1) Å dan c = 7,422(9) Å respectively (Bayah zeolite) and a = 17,69(2) Å, b = 17,92(1) Å dan c = 7,422(9) Å respectively (Lampung zeolite) and pore size are S10R = 10,685 Å dan S8R = 8,193 Å. While Malang zeolites phase (space group Cmcm No.63, Bravais lattice is Base Centered and crystal system is orthorombic) was Mordenite phase and the lattice parameter are a = 18,115(8) Å, b = 20,520(9) Å dan c = 7,515(2) Å. The pore size are S8R = 11,43 Å dan S12R = 7,730 Å. Material of natural zeolit from Bayah and Lampung have Cation Exchange Capasity (CEC) bigger than Malang (acording to results of the framework structure analysis).
HEAVY METAL REMOVAL AT SOLUTION WITH NATURAL ZEOLITE Saryati, Saryati; Supardi, Supardi; Suminta, Supandi; S., Rohmad
Jurnal Zeolit Indonesia Vol 9, No 1 (2010)
Publisher : Jurnal Zeolit Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (116.254 KB)

Abstract

This research studied the effect of chemical activation processes of natural zeolite to heavy metal removing efficiency (%) and chemical composition of natural zeolite. The solutions 0,5M of HCl,NH4OH, KOH and NaOH was used as an activator. Heavy metal solutions (Cu, Cd, Pb, Zn, Fe and Mn) of 50 ppm was used as sample. Chemical composition of zeolite was viewed semi-quantitatively using a SEM EDX. The result indicate that Si/Al ratio was decreased because alkali activity and increased because the acid activity. The efficiency of zeolite without chemical activation on disposal heavy metals in water reached above 80% for Cd,Pb,Cu and Fe, 44% for Zn and 21% for Mn. Activation of natural zeolite with acid generally reduce the efficiency, except Fe and Pb, whereas activation with mineral salts and alkaline generally increase disposal heavy metal efficiency.
STUDI FASA TRANSISI KONDUKTOR SUPERIONIK AgI DENGAN HAMBURAN NEUTRON Suminta, Supandi; Kartini, Evvy
Jurnal Sains Materi Indonesia Vol 3, No 1: OKTOBER 2001
Publisher : Center for Science & Technology of Advanced Materials - National Nuclear Energy Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1251.216 KB) | DOI: 10.17146/jusami.2001.3.1.5253

Abstract

STUDI FASA TRANSISI DALAM KONDUKTOR SUPERIONIK AgI DENGAN HAMBURAN NEUTRON. Analisis struktur kristal konduktor superionik AgI telah dipelajari sebagai fungsi suhu dengan difraksi neutron serbuk. Untuk mengonfirmasi suhu transisi dan mendapatkan informasi tentang fasa transisi AgI, pengukuran kapasitas panas pada suhu transisi AgI telah ditentukan dengan Diffrensial Scanning Calorimetry (DSC). Hasil yang diperoleh menunjukkan bahwa suhu transisi dimulai pada suhu 420K, dicapai puncak pada 428,1K (gauss fitting curve), mendekati akhir pada 433K dan berakhir pada sekitar 438K. Berdasarkan hasil analisis DSC, pengukuran intensitas difraksi neutron diambil pada suhu mendekati awal, puncak, mendekati akhir dan daerah suhu akhir transisi berturut-turut yakni; 420K, 429K, 433K dan 439K. Struktur Agl pada proses pemanasan (heating) pada daerah suhu transisi di atas telah ditentukan. Pada suhu 420K s.d 439K terjadi perubahan fasa β ke fasa α dan garam Agl berada dalam campuran dua fasa major yakni bersistem kristal Heksagonal (grup ruang P 63 m c dan model kedudukan Wycoff :2a) dan BCC (grup ruang I m 3 m dan model kedudukan Wycoff : 48j) serta sedikit FCC (grup ruang F -43 m dan model kedudukan Wycoff :4a). Pada suhu awal transisi 420K, diperoleh fraksi massa fasa β : α : γ adalah 79,51 % : 5,69% : 14,80 %. Pada suhu puncak transisi 428K, didapatkan fraksi massa fasa β : α : γ adalah 68,11% : 20,37% : 11,52%. Pada suhu mendekati akhir transisi fasa 433K, menghasilkan fraksi massa fasa β : α : γ adalah 43,77 % : 53,93% : 2,30%. Pada suhu akhir transisi fasa 439K, diperoleh kandungan fraksi massa fasa β : α : γ adalah 6,21 % : 93,46% : 0,33%. Berdasarkan hasil pengukuran DSC, puncak suhu transisi fasa diperoleh pada 155℃ atau 428K yang berkaitan dengan transisi fasa β ke fasa α. Akan tetapi pada kenyataannya pada suhu 428K, kandungan fraksi massa fasa β dan α masing-masing adalah 68,11% dan 20,37% serta sedikit impuritas fasa γ sebesar 11,53%. Pada Suhu mendekati transisi pada 160℃ atau 433 K, kandungan fraksi massa fasa β dan α masing-masing adalah 43,77% dan 53,93% serta sedikit impuritas fasa γ sebesar 2,30%. Hasil analisis menunjukkan bahwa suhu transisi garam AgI yang diperoleh melalui DSC tidak sama dengan suhu transisi perubahan struktur fasa pada konduktor superionik AgI. Hal ini dibuktikan dengan belum tercapainya perubahan struktur fasa β ke fasa α sebesar 50%, dan hasil DSC dicapai puncak suhu transisi pada suhu 428K ± 1.