Putri Sakinah
Universitas Pendidikan Indonesia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Isotherm adsorption characteristics of carbon microparticles prepared from pineapple peel waste Asep Bayu Dani Nandiyanto; Gabriela Chelvina Santiuly Girsang; Rina Maryanti; Risti Ragadhita; Sri Anggraeni; Fajar Miraz Fauzi; Putri Sakinah; Asita Puji Astuti; Dian Usdiyana; Meli Fiandini; Mauseni Wantika Dewi; Abdulkareem Sh. Mahdi Al-Obaidi
Communications in Science and Technology Vol 5 No 1 (2020)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1227.71 KB) | DOI: 10.21924/cst.5.1.2020.176

Abstract

The objective of this study was to investigate isotherm adsorption of carbon microparticles from pineapple peel waste. Carbon microparticles were prepared by carbonizing pineapple peel waste at 215-250°C and grinding using a saw-milling process. To investigate adsorption properties of carbon microparticles, experiments were done by evaluating adsorption of curcumin (as a model of adsorbate) in the ambient temperature and pressure under constant pH condition. To confirm the adsorption characteristics, carbon particles with different sizes (i.e., 100, 125, and 200 ?m) were tested, and the adsorption results were compared with several standard isotherm adsorption models: Langmuir, Freundlich, Temkin, and Dubinin- Radushkevich. To support the adsorption analysis, several characterizations (i.e., optical microscope, sieve test, and Fourier transform infrared analysis) were conducted. The adsorption test showed that the adsorption profile is fit to the Freundlich model for all variations, indicating the multilayer adsorption process on heterogeneous surfaces and interactions between adsorbate molecules. The results from other isotherm models also confirmed that the adsorption process occurs physically via Van der Waals force in binding adsorbate on the surface of adsorbent.