Claim Missing Document
Check
Articles

Found 3 Documents
Search

SUITABLE PROPORTION SAMPLE OF HOLDOUT VALIDATION FOR SPATIAL RAINFALL INTERPOLATION IN SURROUNDING THE MAKASSAR STRAIT Giarno, Giarno; Hadi, Muhammad Pramono; Suprayogi, Slamet; Murti, Sigit Heru
Forum Geografi Vol 33, No 2 (2019): December 2019
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/forgeo.v33i2.8351

Abstract

Spatial rainfall interpolation requires a number of suitable validation samples to maintain accuracy. Generally, the larger the areas which can be predicted, the better the interpolation. In addition, the data used for validation should be separated from the modelling data. Moreover, the number of samples determine optimally proportion the independent sites. The objective of this study is to determine the optimal sample ratio for holdout validation in interpolation methods; the Makassar Strait was chosen as the study location because of its daily rainfall variation. The accuracy of the sample selection is tested using correlation, root mean square error (RMSE), mean absolute error (MAE) and the indicators of contingency tables. The results show that accuracy depends on the ratio of the modelling data. Therefore, the more extensive the data used for interpolation, the better the accuracy. Otherwise, if the rain gauge data is separated according to province, there will be a variation in accuracy in the portion of independent samples. For rainfall interpolation, it is recommended to use a minimum 75% of data sites to maintain accuracy. Comparison between kriging and inverse distance weighting or IDW methods indicates that IDW is better. Moreover, rainfall characteristics affect the accuracy and portion of the independent sample.
KARAKTERISASI PROTOTIPE HEATER ELEMENT SYSTEM PADA UNTAI UJI RCCS-RDNK MENGGUNAKAN KAMERA INFRA MERAH HARYANTO, DEDY; GIARNO, GIARNO; WITOKO, JOKO PRASETIO; KUSNUGROHO, GREGORIUS BAMBANG HERU; KUSUMASTUTI, RAHAYU; JUARSA, MULYA
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 8, No 2 (2020): ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektro
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v8i2.313

Abstract

ABSTRAKReactor Cavity Cooling System (RCCS) adalah salah satu sistem keselamatan pada Reaktor Daya Non Komersial (RDNK). Untuk mensimulasikan keadaaan tersebut, dibuat prototype Heater Element System (HES) yang merupakan sistem pemanas listrik dan berfungsi untuk memberikan kalor pada simulator dinding RPV (wall) seperti pada acuan RPV tipe HTGR. Tujuan penelitian adalah untuk memperoleh karakteristik temperatur selama pemanasan prototype HES hingga mencapai temperature 400°C berdasarkan posisi vertikal dan horizontal HES. Metode pengamatan dilakukan dengan menggunakan kamera infra merah NEC tipe TH9100ML sebagai alat ukur temperatur dan alat visualisasi ditribusi temperatur. Hasil pengamatan menunjukkan, bahwa kehilangan kalor pada prototipe HES pada posisi vertikal lebih kecil dibandingankan pada posisi horizontal hal ini disebabkan karena luas permukaan pada posisi horizontal sebesar 7,260 cm2 lebih memungkinkan untuk kehilangan kalor lebih besar. Posisi vertikal temperatur yang dicapai pada wall prototipe HES lebih tinggi dibandingkan pada posisi horizontal.Kata Kunci: RCCS, Heater Element System, kamera infra merah, temperatur ABSTRACTReactor Cavity Cooling System (RCCS) is one of the safety systems in Non-Commercial Power Reactors (RDNK). To simulate this situation, a prototype Heater Element System (HES) was made using electric heating system as a heat sources and it serves to provide radiation heat to the RPV wall simulator as the reference of the RPV of HTGR type. The purpose of this study was to obtain the temperature characteristics during the heating of the HES prototype to reach temperatures of 400°C base on HES position, horizontal and vertical positions. The observation method was carried out using a TH9100ML infrared camera NEC type as a temperature measurement and a temperature distribution base on visualization. The observations show that the heat loss in the HES prototype in the vertical position is smaller than in the horizontal position because this is because the surface area in the horizontal position 7.260 cm2 is more likely to lose more heat. The vertical position the temperature achieved on the HES prototype wall is higher than in the horizontal position.Keywords: RCCS, Heater Element System, infrared camera, temperature
Karakteristik Perubahan Temperatur Bagian Pendingin Selama Sirkulasi Alam untuk Kondisi Tunak pada Untai Uji FASSIP-02 A.R, Esa Putra; Giarno, Giarno; P, Adhika Enggar; K, G.B. Heru; A.A, Andrea Shevaladze; Juarsa, Mulya
JMPM (Jurnal Material dan Proses Manufaktur) Vol 5, No 2 (2021): December
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jmpm.v5i2.14064

Abstract

Tangki pendingin merupakan salah satu bagian dari fasilitas FASSIP-02 Test Loop Strand yang merupakan sistem pendingin untuk melepaskan panas ke lingkungan. Fasilitas eksperimental skala besar FASSIP-02 Test Loop Strand dibangun untuk pengembangan sistem keamanan berbasis pendinginan pasif yang memanfaatkan aliran sirkulasi alami. Salah satu hal yang menarik untuk dibahas adalah proses pemanasan, tunak, dan pendinginan yang terjadi pada bagian pendinginan selama percobaan. Tujuan dari penelitian ini adalah untuk mendapatkan karakteristik historis dari perubahan suhu selama proses transien pemanasan, keadaan tunak, dan transien pendinginan di bagian pendinginan. Metode penelitian dilakukan secara eksperimental dengan perubahan kondisi awal setting temperatur air pada bagian pemanasan bervariasi dari 40 0C, 50 0C dan 60 0C. Semua pengukuran dilakukan selama 24 jam menggunakan sistem akuisisi data instrumentasi nasional dengan sampling rate 1 data per detik. Percobaan dilakukan dengan cara memanaskan suhu air di dalam heater sampai mencapai setting suhu yang ditentukan, kemudian mempertahankan suhu pada keadaan tunak selama 5 jam. Selanjutnya, daya listrik ke pemanas dimatikan dan sistem dibiarkan dingin secara alami saat merekam data. Hasil yang diperoleh setelah data percobaan diolah dengan program grafik Orgin 8, dimana diperoleh waktu yang diperlukan untuk mencapai kondisi tunak pada berbagai temperatur 40 0C, 50 0C dan 60 0C adalah 1291 detik, 2392 detik dan 3504 detik, masing-masing. Perubahan temperatur antara inlet dan outlet pada cooler berturut-turut adalah 5,43 0C, 9,67 0C dan 12,62 0C.   ABSTRACT The cooling tank is one part of the FASSIP-02 Test Loop Strand facility which is a cooling system to release heat to the environment. The FASSIP-02 Test Loop Strand large-scale experimental facility was built for the development of passive cooling based safety systems utilizing natural circulating flows. One of the interesting things to discuss is the heating, steady and cooling proCesses that occur in the cooling section during the experiment. The aim of the study was to obtain historical characteristics of temperature changes during the heating transient proCess, steady state and cooling transients in the cooling section. The research method was carried out experimentally with changes in the initial conditions of setting water temperature in the heating section variation from 40 0C, 50 0C and 60 0C. All measurements were carried out for 24 hours using the national instrumensasit data acquisition system with a sampling rate of 1 data per second. The experiment was carried out by heating the water temperature in the heater until it reached the specified temperature setting, then maintaining the temperature at steady state for 5 hours. Next, the electrical power to the heater is turned off and the system is allowed to cool naturally while recording data. The results obtained after the experimental data were proCessed with the Orgin 8 graph program, where it was obtained that the time required to reach steady conditions at various temperatures of 40 0C, 50 0C and 60 0C were 1291 seconds, 2392 seconds and 3504 seconds, respectively. Changes in temperature between the inlet and outlet in the cooler are 5.43 0C, 9.67 0C and 12.62 0C, respectively.