Claim Missing Document
Check
Articles

Found 40 Documents
Search

Pengaruh Penggunaan Multimedia Interaktif Bab Peluang (MUPEL) terhadap Penurunan Kesalahan Konsep Siswa Tyaningsih, Ratna Yulis; Samijo, Samijo
Jurnal Tadris Matematika Vol 2, No 1 (2019)
Publisher : Institut Agama Islam Negeri (IAIN) Tulungagung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (418.684 KB) | DOI: 10.21274/jtm.2019.2.1.41-50

Abstract

Multimedia Interaktif Bab Peluang (MUPEL) are an interactive multimedia to facilitate self-learning in the chapter of Probability. The purpose of this research is: (1) to describe misconception of probability for students who use the interactive multimedia assistance and for students who take the conventional learning and (2) to test the difference in the proportion of decreasing misconception between students who use the interactive multimedia assistance and students who take the conventional learning. The research was conducted at SMAN 2 Kediri. The subjects of this research were students of class XI MIPA 6 as a control class and students of class XI MIPA 8 as an experimental class. The research method that used was Quasi Experiment and the reserach design was Non-Equivalent Pretest-Postest Control Group Design. The instrument of data collection is a diagnostic test of misconception. The data analysis technique used is the proportion test with the Z test and the significance level . The results of this research were: (1) the initial knowledge of the experimental class was 76% still make misconception while the control class 77% still made misconception. After going through the learning process, the experimental class succeeded in reducing misconception to 19%, while the control class succeeded to reduce the misconception only to 45%, and (2) the result of hypothesis testing using the Z-test obtained . Based on these results, the proportion of the reduction in misconception of students with learning facilitated by MUPEL greater than the proportion of the reduction in misconception of students who take conventional learning.
BUKTI YANG MEMBUKTIKAN DAN BUKTI YANG MENJELASKAN DALAM KELAS MATEMATIKA Hamdani, Deni; Junaidi, J.; Novitasari, Dwi; Salsabila, Nilza Humaira; Tyaningsih, Ratna Yulis
Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika Vol 4, No 2: July 2020
Publisher : Lembaga Penelitian dan Pemberdayaan Masyarakat (LITPAM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (902.323 KB) | DOI: 10.36312/e-saintika.v4i2.253

Abstract

Tujuan penelitian ini adalah mendeskripsikan secara komprehensif perbedaan bukti yang membuktikan dan bukti yang menjelaskan berdasarkan pertimbangan implikasi kedua bukti tersebut sebagai dasar konstruksi penalaran dan bukti dalam matematika. Kajian dijalani dengan kegiatan menguraikan perbedaan spesifik antara keduanya serta memberikan contoh kasus kedua bukti, dan memberikan justifikasi atas pentingnya pengenalan kedua bukti dalam kelas matematika. Kedua bukti digambarkan dengan permasalahan konsep barisan bilangan ganjil. Bukti yang membuktikan hanya menunjukkan dengan menggunakan induksi matematis, sementara bukti yang menjelaskan menunjukkan dengan bukti Gauss, representasi geometrik bangun titik, dan garis zig-zag. Perbedaan antara keduanya tampak pada pemberian alasan yang berasal dari bukti itu sendiri. Hasil kajian mengindikasikan bahwa peran bukti dalam kelas matematika pada tingkat perguruan tinggi adalah membuktikan/meyakinkan, pada tingkat menengah atas adalah membuktikan dan menjelaskan, dan pada tingkat sekolah menengah pertama dan dasar peran utamanya adalah menjelaskan. Akibatnya bukti matematis tidak hanya membuktikan/menyakinkan, melainkan juga menjelaskan. Karenanya penting mempertimbangkan implikasi bukti dalam kurikulum matematika di sekolah, serta perlunya menyajikan bab materi kepada mahasiswa pendidikan matematika tidak hanya bukti yang membuktikan, melainkan juga bukti yang menjelaskan.Proofs that Prove and Proofs that Explain in Mathematics ClassroomAbstractThe purpose of this study was to comprehensively describe the differences of the proofs that prove and proofs that explain based on the consideration of the implications of the two proofs as the basis for the construction reasoning and proofs in mathematics. The study was undertaken with the activity of describing the specific differences between the two and providing examples of cases of both proofs; and provide justification for the importance of introducing both proofs in mathematics classrooms. Both proofs are illustrated by the problem of the odd number sequence concept. Proofs that prove is only shown using mathematical induction, while proofs that explain shows with Gaussian proof, a geometric representation of point shape, and zigzag line. The difference between the two appears to be the reasoning that comes from the proof itself. The results of the study indicate that the role of proof in mathematics classes at the tertiary level is proving/convincing, at the senior secondary level it is proving and explaining, and at the junior and elementary school level its main role is explaining. As a result, mathematical proof does not only prove/convince, but also explain. It is therefore important to consider the implications of proof in the mathematics curriculum in schools, as well as the need to present chapter materials to mathematics education students not only proofs that prove but also proof that explain.
The Application Two-Way of Analysis of Variance with Gender and Years Class Junaidi Junaidi; Akhmad Asyari; Ulfa Lu’luilmaknun; Nilza Humaira Salsabila; Ratna Yulis Tyaningsih
AlphaMath : Journal of Mathematics Education Alphamath: Vol. 7, No. 1, May 2021
Publisher : Department of Mathematics Education, Universitas Muhammadiyah Purwokerto, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/alphamath.v7i1.9641

Abstract

Every year the admission of new students with various backgrounds implies that students have different abilities. The difference in student abilities corresponding to student learning habits. Student learning habits maybe different if viewed from the gender and student's years class. Based on differences of student abilities is necessary to conduct research to determine the relationship between student's years class and gender toward student learning habits. This study was an ex post facto study with a sample of 203 students as the sample was selected by simple random sampling technique. Based on analysis of variance statistical analysis of two paths obtained by students' learning habits do not different in terms of gender this can be seen from Fscore = 0.008 with sig = 0.93 > 0.05, while students' learning habits are different if viewed from the year of the student's class this can be seen of the value Fscore = 3.537 with sig = 0.008 < 0.05. Post hoc test indicated that students’ 10th semester difference with student 4th semester and 2th semester. Students 2th semester difference with 6th semester and 8th semester.
Analisis kemampuan represenasi matematis siswa MAN II Kota Batu pada materi deret geometri Mohammad Archi Maulyda; Ratna Yulis Tyaningsih; Baidowi Baidowi
AKSIOMA : Jurnal Matematika dan Pendidikan Matematika Vol 10, No 2 (2019): AKSIOMA: Jurnal Matematika dan Pendidikan Matematika
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/aks.v10i2.4325

Abstract

The representation ability possessed by students is one of the key factors in learning mathematics in schools. Because it needs a study to understand how the ability of representation of students when given a problem. The purpose of this study is to describe the mathematical representation ability of students in class XI IPA MAN II Batu on geometrical series material. For this reason, the research conducted is a qualitative research with a descriptive approach so that researchers can describe how the students' representational abilities. Students are grouped in the ability category of high (KT), moderate (KS), and low (KR). The results of this study are KT, KS, and KR have not met the indicators of the ability of representation that has been determined. The non-fulfillment of these indicators is due to a mismatch between external representation and internal representation.
Pelatihan Administrasi dan Manajemen Sekolah untuk Membekali Kemampuan Manajerial Calon Guru Matematika Ratna Yulis Tyaningsih; Muhammad Turmuzi; Eka Kurniawan
Jurnal Abdimas UNU Blitar Vol 3 No 2 (2021): Volume 3 Nomor 2, Desember 2021
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28926/jppnu.v3i2.64

Abstract

Kegiatan pengabdian kepada masyarakat ini dilatarbelakangi oleh permasalahan kurangnya kemampuan manajerial mahasiswa Pendidikan Matematika sebagai calon guru dalam hal administrasi dan manajemen sekolah. Pengadaan workshop pelatihan administrasi dan manajemen sangat diperlukan untuk memenuhi kebutuhan tersebut dalam rangka meningkatkan mutu pendidikan di sekolah. Pengabdian kepada masyarakat ini bertujuan untuk menumbuhkan kemampuan manajerial mahasiswa dan membekali pengetahuan tentang administrasi dan manajemen sekolah. Kegiatan ini dilaksanakan pada Mei 2021 dengan peserta yaitu mahasiswa dan alumni Pendidikan Matematika di Universitas Mataram sebagai calon guru matematika. Program pengabdian kepada masyarakat ini dilaksanakan dalam bentuk kegiatan yang terdiri dari pemberian pretest untuk mengetahui pengetahuan awal peserta, workshop pelatihan yang dilaksanakan secara virtual melalui Google Meet, dan pemberian postest. Kegiatan ini diharapkan bermanfaat bagi mahasiswa sebagai calon guru untuk meningkatkan pengetahuan tentang administrasi dan manajemen sekolah dan menerapkan kemampuan manajerial yang dipelajari di organisasi/institusi tempat kerja atau sekolah nantinya.
High Visual-Spatial Intelligence Students’ Creativity in Solving PISA Problems Tabita Wahyu Triutami; Uun Hariyanti; Dwi Novitasari; Ratna Yulis Tyaningsih; Junaidi Junaidi
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 5, No 1 (2021): April
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v5i1.3280

Abstract

Creativity is very necessary for learning mathematics, especially when solving geometry problems. This research aims to describe 4th year mathematics education students’ creativity in solving geometry problems. Creativity in this research is focused on fluency, flexibility, and originality of student anwer when solving geometry problems. This research is an explorative descriptive research through a qualitative approach. The participants were 7 fourth year mathematics education students of state University in Mataram, who have a high level of visual-spatial intelligence. The data was collected by written test and interview. The test consisted of two open-ended geometry problems about transforming 3-dimensional images into 2-dimensional images and making 2-dimensional images with a predetermined circumference. The problems are modification of the 2006 PISA test. The result showed that subjects with high visual-spatial intelligence levels met all indicators of creativity. In solving problems that meet the aspects of fluency, flexibility and originality, they combine mental rotation and mental visualization abilities and include using their visual experience by modifying the information obtained and the initial problem solving ideas obtained. This also enables them to produce original problem solutions. The results of this research can be used as an illustration and a guideline to assess students’ creativity with high visual-spatial intelligence level.
Bukti yang Membuktikan dan Bukti yang Menjelaskan dalam Kelas Matematika Deni Hamdani; J. Junaidi; Dwi Novitasari; Nilza Humaira Salsabila; Ratna Yulis Tyaningsih
Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika Vol. 4 No. 2: July 2020
Publisher : Lembaga Penelitian dan Pemberdayaan Masyarakat (LITPAM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36312/e-saintika.v4i2.253

Abstract

Tujuan penelitian ini adalah mendeskripsikan secara komprehensif perbedaan bukti yang membuktikan dan bukti yang menjelaskan berdasarkan pertimbangan implikasi kedua bukti tersebut sebagai dasar konstruksi penalaran dan bukti dalam matematika. Kajian dijalani dengan kegiatan menguraikan perbedaan spesifik antara keduanya serta memberikan contoh kasus kedua bukti, dan memberikan justifikasi atas pentingnya pengenalan kedua bukti dalam kelas matematika. Kedua bukti digambarkan dengan permasalahan konsep barisan bilangan ganjil. Bukti yang membuktikan hanya menunjukkan dengan menggunakan induksi matematis, sementara bukti yang menjelaskan menunjukkan dengan bukti Gauss, representasi geometrik bangun titik, dan garis zig-zag. Perbedaan antara keduanya tampak pada pemberian alasan yang berasal dari bukti itu sendiri. Hasil kajian mengindikasikan bahwa peran bukti dalam kelas matematika pada tingkat perguruan tinggi adalah membuktikan/meyakinkan, pada tingkat menengah atas adalah membuktikan dan menjelaskan, dan pada tingkat sekolah menengah pertama dan dasar peran utamanya adalah menjelaskan. Akibatnya bukti matematis tidak hanya membuktikan/menyakinkan, melainkan juga menjelaskan. Karenanya penting mempertimbangkan implikasi bukti dalam kurikulum matematika di sekolah, serta perlunya menyajikan bab materi kepada mahasiswa pendidikan matematika tidak hanya bukti yang membuktikan, melainkan juga bukti yang menjelaskan.Proofs that Prove and Proofs that Explain in Mathematics ClassroomAbstractThe purpose of this study was to comprehensively describe the differences of the proofs that prove and proofs that explain based on the consideration of the implications of the two proofs as the basis for the construction reasoning and proofs in mathematics. The study was undertaken with the activity of describing the specific differences between the two and providing examples of cases of both proofs; and provide justification for the importance of introducing both proofs in mathematics classrooms. Both proofs are illustrated by the problem of the odd number sequence concept. Proofs that prove is only shown using mathematical induction, while proofs that explain shows with Gaussian proof, a geometric representation of point shape, and zigzag line. The difference between the two appears to be the reasoning that comes from the proof itself. The results of the study indicate that the role of proof in mathematics classes at the tertiary level is proving/convincing, at the senior secondary level it is proving and explaining, and at the junior and elementary school level its main role is explaining. As a result, mathematical proof does not only prove/convince, but also explain. It is therefore important to consider the implications of proof in the mathematics curriculum in schools, as well as the need to present chapter materials to mathematics education students not only proofs that prove but also proof that explain.
Analysis of students' mathematics communication ability based on cognitive styles and mathematical knowledge Syahrul Azmi; Baidowi Baidowi; Nurul Hikmah; Ratna Yulis Tyaningsih; Eka Kurniawan
Jurnal Pijar Mipa Vol. 17 No. 2 (2022): March 2022
Publisher : Department of Mathematics and Science Education, Faculty of Teacher Training and Education, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (623.729 KB) | DOI: 10.29303/jpm.v17i2.3384

Abstract

This study aims to describe the mathematical communication skills of mathematics education students based on their cognitive styles and mathematical knowledge. This research is a qualitative approach. Data were collected by giving the MFFT test to the students to measure their cognitive styles and essay tests for determining their mathematical communication skills. Data were analyzed by comparing the scores of cognitive styles, mathematical communication, and their mathematical performances. The result shows that students with reflective cognitive styles perform better on mathematical communication than impulsive cognitive styles. Moreover, their mathematical knowledge significantly affects their abilities in solving mathematical communication tests.
Pengaruh Penggunaan Multimedia Interaktif Bab Peluang (MUPEL) terhadap Penurunan Kesalahan Konsep Siswa Ratna Yulis Tyaningsih; Samijo Samijo
Jurnal Tadris Matematika Vol 2 No 1 (2019)
Publisher : Institut Agama Islam Negeri (IAIN) Tulungagung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21274/jtm.2019.2.1.41-50

Abstract

Multimedia Interaktif Bab Peluang (MUPEL) are an interactive multimedia to facilitate self-learning in the chapter of Probability. The purpose of this research is: (1) to describe misconception of probability for students who use the interactive multimedia assistance and for students who take the conventional learning and (2) to test the difference in the proportion of decreasing misconception between students who use the interactive multimedia assistance and students who take the conventional learning. The research was conducted at SMAN 2 Kediri. The subjects of this research were students of class XI MIPA 6 as a control class and students of class XI MIPA 8 as an experimental class. The research method that used was Quasi Experiment and the reserach design was Non-Equivalent Pretest-Postest Control Group Design. The instrument of data collection is a diagnostic test of misconception. The data analysis technique used is the proportion test with the Z test and the significance level . The results of this research were: (1) the initial knowledge of the experimental class was 76% still make misconception while the control class 77% still made misconception. After going through the learning process, the experimental class succeeded in reducing misconception to 19%, while the control class succeeded to reduce the misconception only to 45%, and (2) the result of hypothesis testing using the Z-test obtained . Based on these results, the proportion of the reduction in misconception of students with learning facilitated by MUPEL greater than the proportion of the reduction in misconception of students who take conventional learning.
Pemberian scaffolding terhadap berpikir pseudo penalaran siswa dalam mengkonstruksi grafik fungsi Ratna Yulis Tyaningsih; Dwi Novitasari; Deni Hamdani; Aprilia Dwi Handayani; Samijo Samijo
Journal of Science and Education (JSE) Vol. 1 No. 1 (2020): Journal of Science and Education (JSE)
Publisher : CV Rezki Media

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56003/jse.v1i1.9

Abstract

Struktur berpikir pseudo merupakan struktur berpikir semu yang dialami siswa ketika memecahkan suatu masalah, dimana siswa tidak mengetahui letak kesalahan yang dilakukan. Siswa diberikan masalah berupa soal mengkonstruksi grafik fungsi eksponensial dan logaritma. Beberapa penyebab terjadinya proses berpikir pseudo siswa ketika mengkonstruksi grafik fungsi eksponensial dan logaritma adalah adalah (1) salah satu langkah proses penyelesaian diabaikan siswa, (2) tergesa-gesa ketika menghitung atau menggambar, (3) tidak bisa mengaitkan konsep satu dengan yang lain, (4) kurang memahami materi prasyarat, dan (5) tidak melakukan aktivitas refleksi. Penelitian ini bertujuan untuk mendeskripsikan bentuk pemberian scaffolding terhadap struktur berpikir pseudo siswa dalam mengkonstruksi grafik fungsi eksponensial dan logaritma. Subjek penelitian ini terdiri dari 2 siswa dengan kemampuan matematika sedang dan rendah. Pengumpulan data dilakukan dengan memberikan tes dan wawancara untuk mengetahui proses berpikir pseudo siswa ketika mengkonstruksi grafik fungsi eksponensial dan logaritma. Dalam penerapan scaffolding, alat bantu yang digunakan adalah Geogebra. Hasil penelitian ini menunjukkan bahwa proses scaffolding akan berhasil jika siswa memiliki kemauan untuk memperbaiki kesalahan sampai diperoleh jawaban yang benar. Pemberian scaffolding dimulai dari level 1 environmental provisions yaitu pemberian stimulus berupa masalah dengan alat bantu visualisasi, level 2 explaining, reviewing, and restructuring yaitu penjelasan rumusan masalah dan proses review. Pada level 3 developing conceptual thinking, yaitu tanya jawab hal-hal yang bersifat konseptual.