Claim Missing Document
Check
Articles

Found 16 Documents
Search

Prediksi Tingkat Inflasi Di Indonesia Berbasis Jaringan Syaraf Tiruan Dan Algoritma Genetika Rita Rismala; Said Al Faraby
Indonesia Symposium on Computing Indonesian Symposium on Computing 2014/Seminar Nasional Ilmu Komputasi Teknik Informatika (SNIKTI)
Publisher : Indonesia Symposium on Computing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Inflasi menjadi indikator yang sangat penting dalam menganalisis perekonomian negara. Oleh karena itu prediksi terhadap nilai inflasi menjadi penting agar dapat membantu pemerintah dalam mengambil kebijakan untuk menjaga stabilitas moneter dan perekonomian. Pada penelitian ini dilakukan prediksi tingkat inflasi di Indonesia dengan tidak hanya mempertimbangkan data historis inflasi, namun juga mempertimbangkan faktor-faktor lain yang mempengaruh tingkati inflasi di Indonesia. Prediksi dilakukan menggunakan Jaringan Syaraf Tiruan dengan menggunakan algoritma pembelajaran berbasis Algoritma Genetika. Hasil pengujian menunjukkan bahwa akurasi sistem dalam memprediksi nilai tingkat inflasi belum cukup baik. Namun dalam memprediksi kelas inflasi, sistem ini sudah cukup baik terutama dalam mengidentifikasi inflasi dengan kelas rendah.
Analisis dan Implementasi pendekatan Hybrid untuk Sistem Rekomendasi Pekerjaan dengan Metode Knowledge Based dan Collaborative Filtering Sari Rahmawati; Dade Nurjanah; Rita Rismala
Indonesia Journal on Computing (Indo-JC) Vol. 3 No. 2 (2018): September, 2018
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/INDOJC.2018.3.2.210

Abstract

Mencari pekerjaan secara online dapat menjadi kendala tersendiri baik pada pada pelamar pekerjaan maupun pada perusahaan yang mencari karyawan. Saat ini banyak pelamar dan perusahaan lebih memilih menggunakan situs rekruitasi online dibandingkan mencari dengan menggunakan mesin pencari. Recommender system menjadi salah satu kelebihan dari website rekruitasi karena website menyimpan informasi profil pekerja lalu memberikan rekomendasi sesuai dengan data yang mereka dapatkan. Pada penelitian ini penulis membuat hybrid recommender system dengan menggabungkan dua teknik yaitu knowledge based recommender system yang akan merekomendasikan pekerjaan berdasarkan profil user, kualifikasi pekerjaan dan pengaruh dari user lain yang akan memberikan rekomendasi pekerjaan berdasarkan user lain yang memiliki kesamaan. Hasil prediksi dari 2 metode itu akan digabungkan berdasarkan social aperture yang diberikan. Berdasarkan hasil pengujian hybrid recommender system memberikan hasil terbaik untuk memprediksi interaksi dan memberikan rekomendasi berdasarkan hasil RMSE dan f1 score.
Analisis dan Implementasi Imputation-Boosted Neighborhood-Based Collaborative Filtering Menggunakan Genre Film Rita Rismala
Indonesia Journal on Computing (Indo-JC) Vol. 2 No. 1 (2017): Maret, 2017
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/INDOJC.2017.2.1.50

Abstract

Sistem rekomendasi adalah sebuah sistem yang mampu memberikan rekomendasi sejumlah item kepada user dengan memprediksi rating terhadap item berdasarkan minat user. Neighborhood-based collaborative filtering adalah salah satu metode pada Sistem Rekomendasi untuk melakukan perhitungan prediksi rating. Akan tetapi, neighborhood-based collaborative filtering tidak mampu memberikan prediksi rating yang akurat ketika data rating yang ada bersifat sparse atau memiliki banyak kekosongan. Kekosongan data mengakibatkan perhitungan similarity antar user atau item menjadi kurang tepat, yang berakibat pada pemilihan neighbor dan perhitungan prediksi yang tidak tepat pula. Salah satu solusi adalah melakukan imputasi yaitu proses pengisian awal terhadap data dengan metode tertentu. Dengan memanfaatkan feature item berupa genre, dilakukan imputasi terhadap data untuk selanjutnya digunakan oleh neighborhood-based collaborative filtering. Penelitian ini berfokus pada penerapan proses imputasi terhadap neighborhood-based collaborative filtering dan menganalisis pengaruhnya terhadap performansi. Hasil yang diperoleh adalah proses imputasi meningkatkan performansi akurasi prediksi rating pada dataset dengan sparsity 85%, dan peningkatan performansi yang terukur menjadi semakin besar seiring semakin sparse dataset yang ada.
Prediksi Kelulusan Tepat Waktu Mahasiswa Menggunakan Neuro-Fuzzy Classification (NEFClass) (Studi Kasus: Program Studi S1 Teknik Informatika, Universitas Telkom) Retno Novi Dayawati; Serli Fatriandini; Rita Rismala
Indonesia Symposium on Computing Indonesia Symposium on Computing 2015
Publisher : Indonesia Symposium on Computing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Salah satu indikator yang dapat digunakan untuk mengukur performansi studi mahasiswa adalah informasi mengenai lama studi yang berkaitan erat dengan kelulusan tepat waktu. Prediksi kelulusan tepat waktu mahasiswa dapat berperan sebagai early warning, baik bagi dosen wali, ketua program studi, orang tua, maupun mahasiswa itu sendiri. Prediksi kelulusan tepat waktu yang dilakukan secara dini setelah selesai masa Tahap Persiapan Bersama (TPB) akan berdampak positif dalam proses perbaikan performansi studi mahasiswa dan memperbesar peluang kelulusan tepat waktu. Penelitian ini menggunakan model Neuro Fuzzy Classification (NEFCLASS) untuk memprediksi kelulusan tepat waktu mahasiswa. Prediktor yang digunakan untuk memprediksi kelulusan tepat waktu mahasiswa pada penelitian ini adalah IPK TPB, lama masa TPB yang ditempuh, jumlah mata kuliah TPB yang diulang, dan jumlah pengambilan mata kuliah tertentu di masa TPB. Hasil prediksi diklasifikasikan ke dalam 2 kelas yaitu kelas tepat waktu dan kelas tidak tepat waktu. Analisis dilakukan terhadap pengaruh prediktor dan pengaruh parameter learning rate serta epoch terhadap performansi sistem. Hasil yang diperoleh dari penelitian menunjukkan performansi optimal yang dapat diperoleh adalah sebesar 77.725%.  
Implementasi dan Analisis Online – Updating Regularization Kernel Matrix Factorization Model pada Sistem Rekomendasi Agung Toto Wibowo; Kadek Byan Prihandana Jati; Rita Rismala
Indonesia Symposium on Computing Indonesia Symposium on Computing 2015
Publisher : Indonesia Symposium on Computing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Faktorisasi Matriks adalah salah satu metode yang digunakan pada Sistem Rekomendasi untuk membuat sebuah model prediksi rating. Salah satu jenisnya adalah Regularized Matrix Factorization yang mampu memberikan kualitas rekomendasi yang tinggi pada sebuah sistem rekomendasi. Akan tetapi, teknik - teknik Faktorisasi Matriks bermasalah jika model pada sistem rekomendasi berupa model yang statik. Permasalahan performansi terjadi, karena proses learning data pada Faktorisasi Matriks membutuhkan waktu yang lama. Model Online dari Faktorisasi Matriks merupakan hal yang dapat memperbaiki model sebelumnya, dengan model online, waktu yang dibutuhkan untuk melakukan proses prediksi untuk user dan item yang baru, lebih cepat dibandingkan dengan model offline faktorisasi matriks. Penelitian ini berfokus dalam menganalisis dan mengimplementasikan model online dari Regularized Matrix Factorization pada sebuah sistem rekomendasi. Hasil yang diperoleh adalah kualitas prediksi rating dengan metode online – update RKMF mengungguli kualitas prediksi rating dengan metode full – retrain RKMF dengan perbedaan nilai RMSE 1.5% pada kondisi terbaik, dan dengan waktu prediksi yang sangat singkat.  
PREDIKSI TIME SERIES TINGKAT INFLASI INDONESIA MENGGUNAKAN EVOLUTION STRATEGIES Rita Rismala
Jurnal Ilmiah Teknologi Infomasi Terapan Vol. 1 No. 2 (2015)
Publisher : Universitas Widyatama

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (328.772 KB) | DOI: 10.33197/jitter.vol1.iss2.2015.49

Abstract

[INA]Prediksi tingkat inflasi bisa dilakukan dengan cara mempelajari data historis masa lalu yang dinamakan dengan metode prediksi data time series. Permasalahan pencarian model prediksi yang paling optimal berdasarkan pola data historis ini dapat dipandang sebagai sebuah permasalahan optimasi untuk mencari model prediksi yang menghasilkan tingkat error prediksi paling kecil. Evolution Staregies (ES) sering digunakan untuk menyelesaikan masalah-masalah optimasi numerik seperti itu. Oleh karena itu, pada penelitian ini dilakukan prediksi time series tingkat inflasi Indonesia dengan menggunakan ES.Berdasarkan penelitian yang telah dilakukan dapat diketahui bahwa akurasi prediksi yang didapatkan kurang optimal, dengan MAPE 6.54%. Hal ini dikarenakan data historis tingkat inflasi di Indonesia sangat fluktuatif. Namun untuk pola data linear, ES bisa mendapatkan hasil prediksi yang akurat.[EN]The inflation rate can be predicted by studying the history of past data, called time series prediction method. Problem in finding optimal prediction model based on historical data can be viewed as an optimization problem to find a predictive model that resulting the smallest prediction error rate. Evolution Staregies (ES) is often used to solve numerical optimization problems like that. Therefore, in this study was performed Indonesian inflation rate time series prediction using ES.Based on the study can be seen that the accuracy of prediction was less than optimal, with MAPE 6.54%. This was because the historical data of Indonesia inflation rate was very fluctuative. However, for linear data pattern, ES can obtain accurate prediction.
PENERAPAN TEKNIK KLASIFIKASI PADA SISTEM REKOMENDASI MENGGUNAKAN ALGORITMA GENETIKA Rita Rismala; Mahmud Dwi Sulistiyo
Jurnal Ilmiah Teknologi Infomasi Terapan Vol. 2 No. 3 (2016)
Publisher : Universitas Widyatama

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (534.54 KB) | DOI: 10.33197/jitter.vol2.iss3.2016.108

Abstract

[Id]Sistem rekomendasi yang dibangun dalam penelitian ini adalah sistem rekomendasi yang dapat memberikan rekomendasi sebuah item terbaik kepada user. Dari sisi data mining, pembangunan sistem rekomendasi satu item ini dapat dipandang sebagai upaya untuk membangun sebuah model classifier yang dapat digunakan untuk mengelompokkan data ke dalam satu kelas tertentu. Model classifier yang digunakan bersifat linier. Untuk menghasilkan konfigurasi model classifier yang optimal digunakan Algoritma Genetika (AG). Performansi AG dalam melakukan optimasi pada model klasifikasi linier yang digunakan cukup dapat diterima. Untuk dataset yang digunakan dengan kombinasi nilai parameter terbaik yaitu yaitu ukuran populasi 50, probabilitas crossover 0.7, dan probabilitas mutasi 0.1, diperoleh rata-rata akurasi sebesar 72.80% dengan rata-rata waktu proses 6.04 detik, sehingga penerapan teknik klasifikasi menggunakan AG dapat menjadi solusi alternatif dalam membangun sebuah sistem rekomendasi, namun dengan tetap memperhatikan pengaturan nilai parameter yang sesuai dengan permasalahan yang dihadapi.Kata kunci:sistem rekomendasi, klasifikasi, Algoritma Genetika[En]In this study was developed a recommendation system that can recommend top-one item to a user. In terms of data mining, it can be seen as a problem to develop a classifier model that can be used to classify data into one particular class. The model used was a linear classifier. To produce the optimal configuration of classifier model was used Genetic Algorithm (GA). GA performance in optimizing the linear classification model was acceptable. Using the case study dataset and combination of the best parameter value, namely population size 50, crossover probability 0.7 and mutation probability 0.1, obtained average accuracy 72.80% and average processing time of 6.04 seconds, so that the implementation of classification techniques using GA can be an alternative solution in developing a recommender system, due regard to setting the parameter value depend on the encountered problem.Keywords:Recommendation system, classification, Genetic Algorithm
Pairwise Preference Regression on Movie Recommendation System Rita Rismala; Rudy Prabowo; Agung Toto Wibowo
Indonesia Journal on Computing (Indo-JC) Vol. 4 No. 1 (2019): Maret, 2019
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/INDOJC.2019.4.1.255

Abstract

Recommendation System is able to help users to choose items, including movies, that match their interests. One of the problems faced by recommendation system is cold-start problem. Cold start problem can be categorized into three types, they are: recommending existed item for new user, recommending new item for existed user, and recommending new item for new user. Pairwise preference regression is a method that directly deals with cold-start problem. This method can suggest a recommendation, not only for users who have no historical rating, but also for those who only have less demographic info. From the experiment result, the best score of Normalized Discounted Cumulative Gain (nDGC) from the system is 0.8484. The standard deviation of rating resulted by the recommendation system is 1.24, the average is 3.82. Consequently, the distribution of recommendation result is around rating 5 to 3. Those results mean that this recommendation system is good to solving cold-start problem in movie recommendation system.
Lodging Recommendations Using the SparkML Engine ALS and Surprise SVD Ramadhan, Sageri Fikri; Baizal, Z K Abdurahman; Rismala, Rita
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 4, No 4 (2020): Oktober 2020
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v%vi%i.2257

Abstract

Recommendation system is a process or tool used to provide predictions for users to choose something based on an existing domain. This system has become a primary need for today's modern digital industry such as in the entertainment, shopping, and service sectors. In this research, we focus on how to develop a recommendation system for accommodation services. We use the Alternating Least Square and Singular Value Decomposition methods to predict and recommend lodging to users
Kajian Ilmiah dan Deteksi Adiksi Internet dan Media Sosial di Indonesia Menggunakan XGBoost Rismala, Rita; Novamizanti, Ledya; Ramadhani, Kurniawan Nur; Rohmah, Yuyun Siti; Parjuangan, Sabam; Mahayana, Dimitri
JEPIN (Jurnal Edukasi dan Penelitian Informatika) Vol 7, No 1 (2021): Volume 7 No 1
Publisher : Program Studi Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jp.v7i1.43606

Abstract

Internet dan media sosial telah menjadi kebutuhan pokok manusia untuk mengakses informasi, terutama di masa pandemi COVID-19 saat ini. Hal ini penting untuk dikaji karena berdampak pada perilaku dan kesehatan psikologi seseorang. Berdasarkan sudut pandang filsafat sains, adiksi internet dan media sosial di Indonesia merupakan kenyataan saintifik karena telah memenuhi kriteria falsifikasi dan bisa diuji (testable) secara empiris. Hasil survei terhadap 1980 responden, diperoleh 25,56% responden teradiksi internet dan 20,2% teradiksi media sosial. Penelitian ini juga berhasil membangun model untuk mendeteksi adiksi internet dan media sosial menggunakan XGBoost, dengan F-Measure sebesar 69,23% untuk adiksi internet dan 67,66%  untuk adiksi media sosial. Oleh karena itu, fenomena adiksi internet dan media sosial ini perlu mendapatkan perhatian khusus agar dapat diantisipasi sejak dini.