Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : KLIK (Kumpulan jurnaL Ilmu Komputer) (e-Journal)

OPTIMASI FUNGSI KEANGGOTAAN FIS TSUKAMOTO MENGGUNAKAN SIMULATED ANNEALING UNTUK IDENTIFIKASI PENYAKIT GIGI Triando Hamonangan Saragih; Rahmat Ramadhani; Muhammad Itqan Mazdadi; Ahmad Rusadi Arrahimi; Mohammad Reza Faisal
KLIK- KUMPULAN JURNAL ILMU KOMPUTER Vol 7, No 3 (2020)
Publisher : Lambung Mangkurat University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/klik.v7i3.349

Abstract

Teeth are one of the tools in the framework related to the human stomach which fills as a food destroyer for simple processing. Diseases that attack teeth can withstand this action and cannot be distinguished quickly by young dental specialists. This problem can be solved by methods in the field of technology. The algorithm that can be used is FIS Tsukamoto in classification. Optimization of the membership function at FIS Tsukamoto is needed to improve accuracy. Optimization of FIS Tsukamoto membership function using Simulated Annealing produced the highest accuracy at 92.5% of the 100 test data.Keywords: Simulated Annealing; FIS Tsukamoto, Dental Disease, Optimization Gigi adalah salah satu alat dalam kerangka terkait perut manusia yang mengisi sebagai penghancur makanan untuk pemrosesan sederhana. Penyakit yang menyerang gigi dapat menahan tindakan ini dan tidak dapat dibedakan dengan cepat oleh dokter muda spesialis gigi. Masalah ini dapat diselesaikan dengan metode di bidang teknologi. Algoritma yang bisa digunakan yaitu FIS Tsukamoto dalam melakukan klasifikasi. Optimasi fungsi keanggotaan pada FIS Tsukamoto diperlukan untuk meningkatkan akurasi. Optimasi fungsi keanggotaan FIS Tsukamoto menggunakan Simulated Annealing menghasilkan akurasi paling tinggi yaitu 92,5% dari 100 data uji.Kata kunci: Simulated Annealing; FIS Tsukamoto, Penyakit Gigi, Optimisasi
ANALYSIS OF MODIFIED K-MEANS CLUSTERING IN DECISION SUPPORT OF INDUSTRIAL PARTNER GROUPING Billy Sabella; Veri Julianto; Ahmad Rusadi Arrahimi
KLIK- KUMPULAN JURNAL ILMU KOMPUTER Vol 9, No 1 (2022)
Publisher : Lambung Mangkurat University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/klik.v9i1.429

Abstract

Internship is part of achieving the competencies expected in the educational process. Therefore, the suitability of students to companies that serve as a place for street vendors is something important to pay attention to. Weaknesses in the previous system, there are still many students who are not right in choosing companies/agencies. They are still not paying attention to the competencies expected in this internship process. This study aims to help group industrial partners according to the competency achievements of each department. The method used in this research is Modified K-Means Clustering in the grouping process. While the criteria used are the suitability of the company's field with the department, credibility, company ecosystem, company track record in the field of education, and the facilities provided. In carrying out this work, a system will be developed to process the data resulting from the questionnaire so that groups from each company are obtained. The results of the study were obtained from 86 respondents who were apprentices who had been in 37 companies or agencies. 22 questions that build 7 criteria resulted in 4 stable clusters after 8 iterations.Keywords: internship, decision support system, Modified K-Means Clustering.