ABSTRAK: Misal  grup abelian terurut total dan  adalah bagian positifnya,  aljabar-, dan : adalah aksi dari semigrup  pada  melalui endomorfisma. Representasi isometrik  dari  adalah homomorfisma dari semigrup  ke semigrup isometri  pada ruang Hilbert . Adji, Laca, Nilsen, dan Raeburn (1994) telah membuktikan eksistensi representasi kovarian  dan bentuk produk silang yang dibangun oleh representasi isometrik  dari sistem dinamik , serta hubungan  dengan aljabar- yang dibangun oleh unsur-unsur isometri non-uniter. Pada tugas akhir ini akan dilihat bagaimana konstruksi pembuktian hasil-hasil diatas.Kata kunci: produk silang, aljabar-, semigrup, endomorfisma, representasi isometrik. ABSTRACT: Let  be totally ordered abelian group and  be its positive cone,  a -algebra, and an action of  on  by endomorphisms. An isometric representation of  is a homomorphism of the semigroup  into the semigroup of isometries  on a Hilbert space . Adji, Laca, Nilsen and Raeburn (1994) prove the existence of covariant representation  and crossed product generated by isometric representation  of dynamical system , and also the relation between  and a -algebra generated by nonunitary isometric representations. In this paper, we study how they construct the proof.Key words: crossed product, -algebra, semigroup, endomorphisms, isometric representation.