Claim Missing Document
Check
Articles

Found 4 Documents
Search

Peramalan Produksi Kelapa Sawit Menggunakan Winter's dan Pegel's Exponential Smoothing dengan Pemantauan Tracking Signal Setiawan, Dwi Agoes; Wahyuningsih, Sri; Goejantoro, Rito
Jambura Journal of Mathematics Vol 2, No 1: Januari 2020
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjom.v2i1.2320

Abstract

Analisis data time series menggunakan metode Winter’s exponential smoothing dan Pegel’s exponential smoothing merupakan analisis data yang dipengaruhi oleh pola data musiman. Winter’s exponential smoothing merupakan metode peramalan yang mengasumsikan pola data bersifat trend aditif sedangkan Pegel’s exponential smoothing menyajikan sembilan model klasifikasi yang memisahkan faktor trend dan musiman. Penelitian ini bertujuan untuk memperoleh model yang tepat dan hasil peramalan dari data produksi kelapa sawit Provinsi Kalimantan Timur periode Januari 2014 sampai Desember 2017. Hasil peramalan diverifikasi menggunakan metode tracking signal. Hasil penelitian menunjukkan bahwa model musiman multiplikatif tanpa trend pada metode Pegel’s exponential smoothing dengan nilai MAPE sebesar 7,04% memiliki akurasi peramalan yang lebih baik daripada metode yang lainnya. Berdasarkan pemantauan menggunakan tracking signal diperoleh satu hasil peramalan yang bersifat bias. Model musiman multiplikatif tanpa trend dapat digunakan untuk meramalkan 3 bulan ke depan yaitu Januari, Februari dan Maret Tahun 2018. Hasil peramalan 3 bulan ke depan mengalami penurunan secara berturut-turut.
A PENERAPAN METODE SUBTRACTIVE FUZZY C-MEANS PADA TINGKAT PARTISIPASI PENDIDIKAN JENJANG SEKOLAH MENENGAH ATAS/SEDERAJAT DI KABUPATEN/KOTA PULAU KALIMANTAN TAHUN 2018 Suerni, Widya -; Hayati, Memi Nor; Goejantoro, Rito
VARIANCE: Journal of Statistics and Its Applications Vol 2 No 2 (2020): VARIANCE: Journal of Statistics and Its Applications
Publisher : Statistics Study Programme, Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Pattimura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/variancevol2iss2page63-74

Abstract

Cluster analysis is a data exploration method uses to obtain hidden characteristics by forming data clusters. One of the cluster analysis methods is Subtractive Fuzzy C-Means (SFCM). SFCM is a combination of Subtractive Clustering and Fuzzy C-Means methods. The SFCM method has the advantages of not requiring many iterations and the results obtained are more stable and accurate than the FCM and SC methods. This study aims to determine the result of clustering on the enrollment rate data for Senior High School (SHS) / equivalent. The data used were the enrollment rate data for high school / equivalent level in the Regency / City of Kalimantan Island in 2018 using three variables, namely the Crude Participation Rate (CPR), the School Participation Rate (SPR) and the Net Enrollment Rate (NER). Based on the three validity indices, namely Partition Coefficient Index (PCI) Validity Index, Modified Partition Coefficient Index (MPCI), and Xie & Beni Index (XBI) in the SFCM method, the optimal cluster were two clusters. Keywords: clustering, education, Subtractive Fuzzy C-Means
Perancangan Aplikasi Peramalan untuk Metode Exponential Smoothing Menggunakan Aplikasi Lazarus (Studi Kasus: Data Konsumsi Listrik Kota Samarinda) Septiyanor, Hairi; Syaripuddin, Syaripuddin; Goejantoro, Rito
ESTIMASI: Journal of Statistics and Its Application Vol. 2, No. 2, Juli, 2021 : Estimasi
Publisher : Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/ejsa.v2i2.13364

Abstract

Exponential smoothing is forecasting method used to predict the future. Lazarus is an open source software based on free pascal compiler. at this research, program Lazarus be design used exponential smoothing method to predict electricity consumption data in Samarinda City from September to November 2018. Purposed of this researched is to determine the procedure of building an exponential smoothing forecasting application and obtained forecasting result using the built application. Procedure of built the application are designed interface, designed properties and filled coding. The optimum smoothing parameters were obtained used the golden section method. Based on the analysis, electricity consumption data in Samarinda City shows a trend pattern, then the forecasting was used double exponential smoohting (DES) method are DES Brown and DES Holt. The best forecasting method for at this researched is DES Holt, because DES Holt method produced MAPE 0,0659% less than DES Brown method produced MAPE 0,0843%.
ANALISIS CREDIT SCORING TERHADAP STATUS PEMBAYARAN BARANG ELEKTRONIK DAN FURNITURE MENGGUNAKAN BOOTSTRAP AGGREGATING K-NEAREST NEIGHBOR Astuti, Putri Sri; Hayati, Memi Nor; Goejantoro, Rito
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 15 No 4 (2021): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : MATHEMATIC DEPARTMENT, FACULTY OF MATHEMATICS AND NATURAL SCIENCES, UNIVERSITY OF PATTIMURA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol15iss4pp735-744

Abstract

Classification is the process of grouping objects that have the same characteristics into several categories. This study applies a combination of classification algorithms, namely Bootstrap Aggregating K-Nearest Neighbor in credit scoring analysis. The aim is to classify the credit payment status of electronic goods and furniture at PT KB Finansia Multi Finance in 2020 and determine the level of accuracy produced. Credit payment status is grouped into 2 categories, namely smoothly and not smoothly. There are 7 independent variables that are used to describe the characteristics of the debtor, namely age, number of dependents, length of stay, years of service, income, amount of payment, and payment period. The application of the classification algorithm at the credit scoring analysis is expected to assist creditors in making decisions to accept or reject credit applications from prospective debtors. The results showed that the accuracy obtained from the Bootstrap Aggregating K-Nearest Neighbor algorithm with a proportion of 90:10, m=80%, C=73, and K=5 was the best, which was 92.308%.