Claim Missing Document
Check
Articles

Found 2 Documents
Search

Pemanfaatan Limbah Minyak Menjadi Lilin Aromaterapi Layak Jual dengan Teknologi Pemasaran Website E-Commerce dan Google Ads Vera Noviana Sulistyawan; Faizal Ghozali Abas; Wenny Adridtna Kencana Weda; Very Mareta Rahmawati Sulistyawan; Nur Azis Salim; Maharani Kusumaningrum; Hendra Dewinta Setiyani; Budiyono Budiyono
E-Dimas: Jurnal Pengabdian kepada Masyarakat Vol 14, No 2 (2023): E-DIMAS
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/e-dimas.v14i2.11975

Abstract

Pandemi, disrupsi, dan inflasi menjadi tantangan besar dalam sektor ekonomi di Indonesia saat ini. Disrupsi teknologi digital merupakan peluang yang bisa dimanfaatkan untuk pemulihan ekonomi. Sasaran dalam pengabdian ini adalah Desa Pucangan yang terletak di Kabupaten Sukoharjo, Jawa Tengah. Desa Pucangan memiliki beberapa penjual UMKM dimana desa tersebut menghasilkan limbah minyak jelantah yang cukup banyak. Jika limbah tersebut tidak diolah dengan benar maka akan mencemari lingkungan dan mengganggu kesehatan. Di desa tersebut belum ada pengolahan limbah minyak. Disisi lain, banyak masyarakat yang terdampak Covid 19 di desa tersebut sehingga kehilangan pekerjaan yang menjadi sumber penghasilan. Dalam pengabdian ini, diusulkan sosialisasi dan pelatihan mengolah limbah minyak jelantah menjadi lilin aromaterapi yang layak untuk dijual. Selain itu, masyarakat dilatih menggunakan teknologi website e-commerce untuk pemasaran yang diharapkan dapat memperluas area penjualan lilin tersebut. Dalam proses penjualan mengaplikasikan periklanan menggunakan Google Ads yang terintegrasi dengan website e-commerce yang dibuat. Tujuan dari pengabdian ini adalah membentuk/memberdayakan kelompok masyarakat di Desa Pucangan agar dapat mandiri secara ekonomi.
Robust Stochastic Model Predictive Control for Autonomous Vehicle Motion Planning Subiyanto Subiyanto; Arimaz Hangga; Aldias Bahatmaka; Nur Azis Salim; Deyndrawan Sutrisno; Elfandy Yunus; Setya Budi Arif Prabowo; Muhammad Hilmi Farras; Diadora Sanggrahita
Jurnal Rekayasa Elektrika Vol 20, No 3 (2024)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v20i3.39281

Abstract

This work presents a Robust Stochastic Model Predictive Control (RSMPC) framework for real-time motion planning autonomous vehicles, addressing the complex multi-modal vehicle interactions. The proposed framework involves adding expert policy from observations to the dataset and applying the Data Aggregation (DAgger) method to filter unsafe demonstrations and resolve expert conflicts. A Dual-Stage Attention-based Recurrent Neural Network (DA-RNN) model is integrated to predict dual class variables from the dataset, producing a set containing constraints collision-avoidance predicted to be active. The RSMPC framework enhances formulation optimization by eliminating irrelevant collision avoidance constraints, resulting in faster control signals. The framework is applied iteratively, continuously updating observations and solving the RSMPC optimization formulation in real-time. Evaluation of the DA-RNN model achieved a recall value of 0.97 and a high accuracy rate of 98.1% in predicting dual interactions, with a minimal false negative rate of 0.026, highlighting its effectiveness in capturing interaction intricacies. Validated through simulations of interactive traffic intersections, the proposed framework demonstrably excels, showing high feasibility of 99.84% and a 15-fold increase in response speed compared to the baseline. This approach ensures autonomous vehicles navigate safely and efficiently in complex traffic scenarios, paving the way for more reliable and scalable autonomous driving solutions.