This Author published in this journals
All Journal Jurnal Informatika
Akhmad Syukron, Akhmad
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jurnal Informatika

Penerapan Metode Random Over-Under Sampling dan Random Forest Untuk Klasifikasi Penilaian Kredit Syukron, Akhmad; Subekti, Agus
Jurnal Informatika Vol 5, No 2 (2018): Jurnal INFORMATIKA
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (596.63 KB) | DOI: 10.31294/ji.v5i2.4158

Abstract

                                         AbstrakPenilaian kredit telah menjadi salah satu cara utama bagi sebuah lembaga keuangan untuk menilai resiko kredit,  meningkatkan arus kas, mengurangi kemungkinan resiko dan membuat keputusan manajerial. Salah satu permasalahan yang dihadapai pada penilaian kredit yaitu adanya ketidakseimbangan distribusi dataset. Metode untuk mengatasi ketidakseimbangan kelas yaitu dengan metode resampling, seperti menggunakan Oversampling, undersampling dan hibrida yaitu dengan menggabungkan kedua pendekatan sampling. Metode yang diusulkan pada penelitian ini adalah penerapan metode Random Over-Under Sampling Random Forest untuk meningkatkan kinerja akurasi klasifikasi penilaian kredit pada dataset German Credit.  Hasil pengujian menunjukan bahwa klasifikasi tanpa melalui proses resampling menghasilkan kinerja akurasi rata-rata 70 % pada semua classifier. Metode Random Forest memiliki nilai akurasi yang lebih baik dibandingkan dengan beberapa metode lainnya dengan nilai akurasi sebesar 0,76 atau 76%. Sedangkan klasifikasi dengan penerapan metode Random Over-under sampling Random Forest  dapat meningkatkan kinerja akurasi sebesar 14,1% dengan nilai akurasi sebesar 0,901 atau 90,1 %. Hasil penelitian menunjukan bahwa penerapan  resampling dengan metode Random Over-Under Sampling pada algoritma Random Forest dapat meningkatkan kinerja akurasi secara efektif pada klasifikasi  tidak seimbang untuk penilaian kredit pada dataset German Credit. Kata kunci: Penilaian Kredit, Random Forest, Klasifikasi, ketidakseimbangan kelas, Random Over-Under Sampling                                                  AbstractCredit scoring has become one of the main ways for a financial institution to assess credit risk, improve cash flow, reduce the possibility of risk and make managerial decisions. One of the problems faced by credit scoring is the imbalance in the distribution of datasets. The method to overcome class imbalances is the resampling method, such as using Oversampling, undersampling and hybrids by combining both sampling approaches. The method proposed in this study is the application of the Random Over-Under Sampling Random Forest method to improve the accuracy of the credit scoring classification performance on German Credit dataset. The test results show that the classification without going through the resampling process results in an average accuracy performance of 70% for all classifiers. The Random Forest method has a better accuracy value compared to some other methods with an accuracy value of 0.76 or 76%. While classification by applying the Random Over-under sampling + Random Forest method can improve accuracy performance 14.1% with an accuracy value of 0.901 or 90.1%. The results showed that the application of resampling using Random Over-Under Sampling method in the Random Forest algorithm can improve accuracy performance effectively on an unbalanced classification for credit scoring on German Credit dataset. Keywords: Imbalance Class, Credit Scoring, Random Forest, Classification, Resampling