Dewi, Irma Amelia
Fakultas Teknologi Informasi

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Klasifikasi Support Vector Machine (SVM) Untuk Menentukan TingkatKemanisan Mangga Berdasarkan Fitur Warna Ichwan, Muhammad; Dewi, Irma Amelia; S, Zeni Muharom
MIND Journal Vol 3, No 2 (2018): MIND Journal
Publisher : Institut Teknologi Nasional Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (434.983 KB) | DOI: 10.26760/mindjournal.v3i2.16-23

Abstract

Dalam proses penentuan mutu atau tingkat kemanisan buah mangga cengkir di pasaran pada umumnya dilakukan dengan dengan dua cara yaitu menggunakan pakar-pakar untuk pemilihan / sortasi kemanisan mangga atau menggunakan metode destruktif dengan cara pengambilan sampel, uji coba kemanisan mangga tersebut seperti menggunakan Refractometer. Permasalahan yang terjadi pada kedua proses tersebut yaitu memiliki cost yang relative besar dan tidak menghasilkan mutu yang seragam karena sortasi tingkat kemanisan mangga oleh pakar bersifat subjektif dan kemungkinan terjadinya kesalahan pengamatan sangat. Support Vector Machine (SVM) diimplementasikan pada penelitian ini dan K-Nearest Neighbour (K-NN) sebagai metoda pembanding untuk klasifikasi citra warna buah mangga cengkir. Dalam penelitan ini perbandingan antara kedua metode tersebut dibandingkan dengan hasil output dari alat pengukur tingkat kemanisan yaitu refractometer sebanyak 24 objek pengujian dengan akurasi sebesar 83,3%. Sedangkan hasil yang diperoleh dari metode K-NN dengan k=7 adalah data valid 21 buah dari 24 buah, dan data tidak valid 3 buah dari 24 buah.
Identifikasi Ciri Garis Telapak Tangan Berbasis Template Matching dan Metode K-Nearest Neighbor Hermana, Asep Nana; Dewi, Irma Amelia; Susanto, Irwan
MIND Journal Vol 3, No 2 (2018): MIND Journal
Publisher : Institut Teknologi Nasional Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (529.003 KB) | DOI: 10.26760/mindjournal.v3i2.25-35

Abstract

Telapak tangan merupakan ciri unik yang dimiliki oleh manusia yang dapat digunakan pada sistem identifikasi. Proses template matching membutuhkan perhitungan pencocokan untuk menentukan bagian kecil gambar yang memiliki nilai terbesar dikarenakan semakin besar nilai maka tingkat kecocokan semakin tinggi. Sehingga untuk pencocokan dibutuhkan perhitungan normalized cross correlation dengan perhitungan konvolusi yang setiap bagian pixel akan dilakukan pencocokan, diawali dari pixel bagian pojok kiri atas hingga pojok kanan bawah dan akan mendapatkan nilai pencocokan terbesar.Setelah mendapat nilai terbesar dilakukan k-nearest neighbor yang merupakan pengelompokan berdasarkan jarak dan untuk menentukan jarak k digunakan perhitungan euclidien distance. Selanjutnya pengelompokan berdasarkan voting terbanyak yang dimulai dari nilai jarak ketetanggaan terkecil hingga terbesar. Tingkat akurasi pengujian dari 30 sampel telapak tangan didapatkan presentase sebesar 86,67% teridentifikasi benar dan 13,33% salah.