Claim Missing Document
Check
Articles

An analysis on Aerodynamics Performance Simulation of NACA 23018 Airfoil Wings on Cant Angles Hariyadi, Setyo
Journal of Energy, Mechanical, Material and Manufacturing Engineering Vol 2, No 1 (2017)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (596.352 KB) | DOI: 10.22219/jemmme.v2i1.4905

Abstract

Winglet attached on the tip of aircraft wings to increase lift. Mainly, winglet used for increasing aerodynamic efficiency, it decreases induced drag caused by vortex on wings tip. The phenomenon of vortex is collision of high-pressured air below the wings meet the low-pressured air above it that cause turbulence. Induced drag may reach 40% of total drag during cruising, and 80-90% while take off. A procedure to decrease induced drag is using wing tip devices. It used on commercial aircrafts and the most frequently used is blended winglet. Numerical study conducted to examine the best aerodynamic performance of sub-sonic plane wings in angles of attack. Analysis on NACA 23018 airfoil wings with blended winglet on the tip was conducted. Freestream velocity of 40 m/s or Re = 1 × 106, and angle of attack (α) 0o, 5o, 10o, and 15o are used. Evaluation for parameter includes coefficient pressure (Cp), velocity profile, lift, drag, and ratio CL/CD. Obtained contour are pressure contour, velocity, and vorticity. In view of all this, there is increasing performance of aerodynamic with CL/CD ratio of wings with blended winglet and plain wing. Reaching current angle of attack, the function of winglet is gradually decrease.
COMPARATIVE STUDY OF FORWARD WINGTIP FENCE AND REARWARD WINGTIP FENCE ON WING AIRFOIL EPPLER E562 Hariyadi, Setyo; Sutardi, Sutardi; Widodo, Wawan Aries; Pitoyo, Bambang Juni
Journal of Energy, Mechanical, Material, and Manufacturing Engineering Vol 5, No 1 (2020)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1094.366 KB) | DOI: 10.22219/jemmme.v5i1.11968

Abstract

The perfect wing is a dream that many airplanes has manufactured have been striving to achieve since the beginning of the airplane design. There are some aspect that most influence in aircraft design lift, drag, thrust, and weight. The combination of these aspects leads to a decrease in fuel consumption, which reduces pollution in our atmosphere and increase in economic revenue. One way to improve aircraft performance is to modify the tip of the wing geometry, which has become a common sight on today?s airplanes. With computational programs, the effects on drag due to wingtip devices can be previewed. This research was done numerically by using turbulence model k-? SST. Reynolds number in this research was 2,34 x 10 4 with angle of attacks are 0o, 2o, 4o, 6o, 8o, 10o, 12o, 15o, 17o and 19o. The model specimen is wing airfoil Eppler 562 with winglets. Two types of wingtips are used: forward and rearward wingtip fence. From this study, it was found that wingtip fence reduced the strength of vorticity magnitude on the x axis compared to plain wings. The leakage of fluid flow effect at the leading edge corner of the wingtip, giving pressure gradient and slightly shifting towards the trailing edge. this occurs in the plain wing and rearward wingtip fence but does not occur in the forward wingtip fence..
Comparative Study Aerodynamics Effects of Wingtip Fence Winglet on Fix Wing Airfoil Eppler E562 Setyo Hariyadi Suranto Putro; Sutardi Sutardi; Wawan Aries Widodo; Bambang Juni Pitoyo
WARTA ARDHIA Vol 45, No 2 (2019)
Publisher : Research and Development Agency of The Ministry of Transportation

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25104/wa.v45i2.356.67-76

Abstract

Wings on airplanes and Unmanned Aerial Vehicles (UAVs) have a very important role in the formation of lift forces. This is because most of the lifting force arises on the wing. Therefore, aircraft designers pay great attention to wing modification. Today's aircraft designers tend to provide geometric modifications displayed in computational applications so that visualization of fluid flow can appear clearly. By increasing the lift as high as possible on the wing and lowering the drag as low as possible, it is expected that high aerodynamic efficiency will be achieved in air transportation. This research was done numerically by using the turbulence model k-ω SST. Reynolds number in this research was 2,34 x 104 with the angle of attacks are 0o, 2o, 4o, 6o, 8o, 10o, 12o, 15o, 17o and 19o. The model specimen is wing airfoil Eppler 562 with winglets. Two types of wingtips are used: forward and rearward wingtip fence. From this study, it was found that the wingtip fence reduced the strength of vorticity magnitude on the x-axis and z-axis compared to plain wings. With the addition of a wingtip fence, it has a significant effect on the shape of the vorticity magnitude behind the wing. This indicates a decrease in induced drag on the wing which has a wingtip fence.
An analysis on Aerodynamics Performance Simulation of NACA 23018 Airfoil Wings on Cant Angles Setyo Hariyadi
JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering) Vol. 2 No. 1 (2017)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jemmme.v2i1.4905

Abstract

Winglet attached on the tip of aircraft wings to increase lift. Mainly, winglet used for increasing aerodynamic efficiency, it decreases induced drag caused by vortex on wings tip. The phenomenon of vortex is collision of high-pressured air below the wings meet the low-pressured air above it that cause turbulence. Induced drag may reach 40% of total drag during cruising, and 80-90% while take off. A procedure to decrease induced drag is using wing tip devices. It used on commercial aircrafts and the most frequently used is blended winglet. Numerical study conducted to examine the best aerodynamic performance of sub-sonic plane wings in angles of attack. Analysis on NACA 23018 airfoil wings with blended winglet on the tip was conducted. Freestream velocity of 40 m/s or Re = 1 × 106, and angle of attack (α) 0o, 5o, 10o, and 15o are used. Evaluation for parameter includes coefficient pressure (Cp), velocity profile, lift, drag, and ratio CL/CD. Obtained contour are pressure contour, velocity, and vorticity. In view of all this, there is increasing performance of aerodynamic with CL/CD ratio of wings with blended winglet and plain wing. Reaching current angle of attack, the function of winglet is gradually decrease.
Comparative Study of Forward Wingtip Fence and Rearward Wingtip Fence on Wing Airfoil Eppler E562 Setyo Hariyadi; Sutardi Sutardi; Wawan Aries Widodo; Bambang Juni Pitoyo
JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering) Vol. 5 No. 1 (2020)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jemmme.v5i1.11968

Abstract

The perfect wing is a dream that many airplanes has manufactured have been striving to achieve since the beginning of the airplane design. There are some aspect that most influence in aircraft design lift, drag, thrust, and weight. The combination of these aspects leads to a decrease in fuel consumption, which reduces pollution in our atmosphere and increase in economic revenue. One way to improve aircraft performance is to modify the tip of the wing geometry, which has become a common sight on today’s airplanes. With computational programs, the effects on drag due to wingtip devices can be previewed. This research was done numerically by using turbulence model k-ω SST. Reynolds number in this research was 2,34 x 10 4 with angle of attacks are 0o, 2o, 4o, 6o, 8o, 10o, 12o, 15o, 17o and 19o. The model specimen is wing airfoil Eppler 562 with winglets. Two types of wingtips are used: forward and rearward wingtip fence. From this study, it was found that wingtip fence reduced the strength of vorticity magnitude on the x axis compared to plain wings. The leakage of fluid flow effect at the leading edge corner of the wingtip, giving pressure gradient and slightly shifting towards the trailing edge. this occurs in the plain wing and rearward wingtip fence but does not occur in the forward wingtip fence..
STUDI NUMERIK EFEK PERBANDINGAN PENAMBAHAN WINGTIP FENCE DAN BLENDED WINGLETTERHADAP PERFORMA AEORODINAMIKA AIRFOIL NACA 23018 Setyo Hariyadi S.P.
ROTOR 2016: ROTOR Special Edition
Publisher : Jurusan Teknik Mesin Fakultas Teknik Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (874.164 KB)

Abstract

Winglet is one of the devices in airplane wing that allows wing performances without widening the wingspan. It serves to damp the vortex flow at the ends of the wing where the airflow coincide that produce turbulence. The air loop requires more energy in the plane to make stable in the air, so it definitely wasteful of fuel. Based on the pilot experience, winglet in the plane can save fuel consumption by 7% that is a huge amount of the percentage to travel in a long way. This study conducts numerical simulation using simulation software with turbulent model of k-ε realizable. The free stream of fluid flow is determined as 40 m/s (Re = 5 x 106) with angle of attack (α) = 0o, 5o, 10o and 15o. Airfoil NACA 23018 is used as specimen test applied with or without winglet. Wingtip fence with variations of forward, rearward and blended is designed as the winglet. The results show that adding winglet can reduce the vorticity magnitude in rear wing. Moreover, it can also increase the aerodynamic performances by increasing maximum CL/CD both in forward and rearward wingtip fence and also in blended winglet. The pressure distribution in the winglet model shows gradually increasing in the lower surface compared with plain wing. Keywords: airflow, wingtip fence, blended winglet, lift force, drag force
Simulasi Dinamika Aliran Turbulen Pada Flat Plate Boundary Layer Menggunakan Turbulent Model k – ε (Standard, Realizable, RNG) Setyo Hariyadi S.P.
Approach : Jurnal Teknologi Penerbangan Vol. 1 No. 1 (2017): April 2017
Publisher : Politeknik Penerbangan Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2395.163 KB)

Abstract

Aliran turbulen banyak dijumpai pada kehidupan kita sehari-hari baik di dunia industri, rumah tangga maupun di alam. Besaran-besaran di dalam aliran turbulen terdiri atas komponen rata-rata dan komponen fluktuasi. Di dalam aliran turbulen besaran-besaran seperti kecepatan, densitas, temperatur, entalpi mengalami fluktuasi. Fluktuasi besaran-besaran ini berperan sangat penting terhadap energi kinetik aliran berikut besaran lain yang merupakan derivasi dari fluktuasi tersebut. Studi numerik telah dilaksanakan untuk menguji kinerja aerodinamis pada plat datar dengan menggunakan beberapa turbulen model k – ε (Standard, Realizable, RNG). Kecepatan freestream yang digunakan yaitu kecepatan 10 m/s dan pada kondisi udara standard. Parameter yang dievaluasi meliputi distribusi tekanan, intensitas turbulensi dan turbulence spectra. Dari penelitian tersebut didapatkan bahwa dengan penggunaan turbulent model k – ε Realizable menghasilkan yang terbaik dibandingkan turbulent model yang lain.
Analisis Aerodinamika Pada Wingtip Fence Cessna 172 di Laboratorium Teknik Pesawat Udara ATKP Surabaya Setyo Hariyadi; Wiwid Suryono
Approach : Jurnal Teknologi Penerbangan Vol. 1 No. 2 (2017): Oktober 2017
Publisher : Politeknik Penerbangan Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (828.673 KB)

Abstract

Winglet adalah salah satu aksesoris pada sayap pesawat yang memungkinkan penambahan performansi sayap tanpa harus memperlebar wingspan (bentangan sayap pesawat). Winglet berfungsi untuk meredam pusaran aliran (vortex) pada bagian ujung sayap yang disebabkan pertemuan aliran udara dari bagian bawah sayap yang bertekanan tinggi dengan aliran udara bagian atas sayap yang bertekanan rendah yang menyebabkan terjadinya turbulensi. Putaran udara ini juga menyebabkan pesawat membutuhkan energi yang lebih besar agar dapat stabil di udara, sehingga akan boros bahan bakar. Berdasarkan pengalaman dari pilot, dengan adanya winglet, bahan bakar pesawat bisa diirit hingga 7%, jumlah yang cukup besar untuk pesawat yang melakukan perjalanan jarak jauh. Penelitian ini dilakukan dengan simulasi numerik mengunakan software simulasi dengan model turbulen k-ω SST. Kecepatan aliran freestream yang akan digunakan sebesar 40 m/s (Re = 5 x 106) dengan sudut serang (α) = 0o, 2o, 4o, 6o, 8o, 10o,12o, 15o, 17o dan 19o. Model benda uji berupa airfoil NACA 23018 yang digunakan pada pesawat Cessna 172 dengan dan tanpa winglet. Winglet yang akan dipakai adalah wingtip fence dengan variasi forward atau sering disebut sebagai forward wingtip fence. Dari penelitian didapatkan bahwa dengan penambahan winglet dapat memperkecil vorticity magnitude di belakang wing. Selain itu dengan penambahan winglet dapat meningkatkan performa aerodinamika dari wing yaitu dengan peningkatan CL/CD maksimal pada forward wingtip fence. Distribusi tekanan pada model dengan winglet menunjukkan peningkatan dan lebih merata di lower surface daripada plain wing.
STUDI EKSPERIMEN VISUALISASI ALIRAN PADA AIRFOIL NACA 0012 DENGAN VORTEX GENERATOR Tandyta Permata Putra; Setyo Hariyadi S.P.
Approach : Jurnal Teknologi Penerbangan Vol. 2 No. 2 (2018): Oktober 2018
Publisher : Politeknik Penerbangan Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (645.664 KB)

Abstract

Airfoil merupakan suatu struktur aerodinamika yang banyak digunakan baik pada sayap pesawat maupun mesin - mesin fluida seperti kompresor, dan turbin. Airfoil pada sayap pesawat digunakan untuk mengangkat badan pesawat. Perbedaan tekanan antara bagian atas dan bawah airfoil menyebabkan pesawat mendapat gaya angkat. Peningkatan performa airfoil dapat dilakukan dengan berbagai cara, salah satunya yaitu memberi vortex generator untuk meluruskan aliran udara yang melewati airfoil. Hal ini sering terlihat pada hampir semua jenis pesawat terbang. Metode yang akan digunakan pada studi ini adalah simulasi ekperimen menggunakan terowongan angin (wind tunnel)subsonic dengan kecepatan freestream yang digunakan yaitu kecepatan 10 m/s. Benda uji berupa airfoil NACA 0012 dengan panjang chord 50 cm, sudut serang (angle of attack) 0°, 4°, 10°, 12° dan 15°, dan variasi vortex generator. Dari penelitian ini didapatkan performa aerodinamika dan fenomena aliran di sekitar airfoil. Perihal ini ada peningkatan performa aerodinamika pesawat dari sudut serang 4° sampai sudut serang 15° terbukti dengan kenaikan CL/CD dan penundaan stall.
STUDI NUMERIK DAN EKSPERIMENTAL PERBANDINGAN BENTUK VORTEX GENERATOR DENGAN POSISI STRAIGHT PADA WING AIRFOIL NACA 43018 Setyo Hariyadi S.P.; Wawan Aries Widodo; Bambang Junipitoyo; Wiwid Suryono; Supriadi Supriadi
Approach : Jurnal Teknologi Penerbangan Vol. 2 No. 2 (2018): Oktober 2018
Publisher : Politeknik Penerbangan Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (627.763 KB)

Abstract

Pesawat terbang merupakan aplikasi ilmu mekanika fluida yang sangat memperhatikan aspek aerodinamika karena berkaitan dengan performa pada penerbangan. Satu hal penting yang harus diperhatikan dalam pendesainan suatu pesawat yaitu pemilihan airfoil dan modifikasinya. Modifikasi airfoil dilakukan untuk menunda separasi aliran dan meningkatkan performa airfoil, salah satunya dengan vortex generator. Hal ini dapat diindikasikan dengan tertundanya separasi aliran yang melintasi permukaan atas dari airfoil. Dengan tertundanya separasi ini maka gaya lift akan semakin besar dan gaya drag akan semakin kecil. Penelitian sebelumnya menunjukkan bahwa penambahan vortex generator pada permukaan atas airfoil dapat menunda terjadinya separasi aliran. Hal ini disebabkan aliran lebih tahan melawan gaya gesek dan adverse pressure gradient. Topik yang dikaji dalam penelitian ini adalah aliran melintasi airfoil NACA 43018 dengan penambahan vortex generator. Profil vortex generator yang digunakan adalah flat plate vortex generator dengan konfigurasi straight dan ditempatkan pada x/c = 10% dan 20% arah chord line dari leading edge. Variasi yang digunakan adalah bilangan Reynolds (Re) dan sudut serang (α) pada airfoil. Kecepatan freestream yang digunakan yaitu kecepatan 12 m/s atau Re = 7,65 x 105 dan kecepatan 17 m/s atau Re = 9 x 105, dan pada sudut serang (α) 0o, 3o, 6o, 9o, 12o, 15o, 19o, dan 20o. Parameter yang dievaluasi meliputi koefisien tekanan (Cp), profil kecepatan, koefisien lift, koefisien drag, dan rasio CL/CD. Hasil penelitian ini menunjukkan bahwa terjadi peningkatan performansi dari airfoil NACA 43018 dengan penambahan vortex generator dibandingkan dengan tanpa vortex generator. Adanya vortex generator, dapat menunda terjadinya separasi. Dengan penambahan vortex generator terjadi peningkatan koefisien lift sekitar 5% dan menaikkan koefisien drag sekitar 1,5%. Rasio CL/CD meningkat sekitar 5 %.