p-Index From 2019 - 2024
8.944
P-Index
Resmawan Resmawan
Department Of Mathematics, Universitas Negeri Gorontalo

Published : 67 Documents
Claim Missing Document
Articles

## Title

### Found 67 Documents Search

Sensitivity Analysis of Mathematical Model of Coronavirus Disease (COVID-19) Transmission Resmawan, Resmawan; Yahya, Lailany
CAUCHY Vol 6, No 2 (2020): CAUCHY: Jurnal Matematika Murni dan Aplikasi
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

#### Abstract

The study was aimed to introduce a new model construction regarding the transmission of Coronavirus Disease (henceforth, COVID-19) in human population. The mathematical model was constructed by taking into consideration several epidemiology parameters that are closely identical with the real condition. The study further conducted an analysis on the model by identifying the endemicity parameters of COVID-19, i.e., the presence of disease-free equilibrium (DFE) point and basic reproduction number. The next step was to carry out sensitivity analysis to find out which parameter is the most dominant to affect the diseaseâ€™s endemicity. The results revealed that the parameters ðœ‚, ðœð‘ ð‘’, ð›¼,, and ðœŽ in sequence showed the most dominant sensitivity index towards the basic reproduction number. Moreover, the results indicated positive index in parameters ðœ‚ and ðœð‘ ð‘’ that represented transmission chances during contact as well as contact rate between vulnerable individuals and exposed individual. This suggests that anincrease in the previous parameter value could potentially enlarge the endemicity of COVID-19. On the other hand, parameters ð›¼ and ðœŽ, representing movement rate of exposedindividuals to the quarantine class and proportion of quarantined exposed individuals, showed negative index. The numbers indicate that an increase in the parameter value could decrease the diseaseâ€™s endemicity. All in all, the study concludes that treatments for COVID-19 should focus onrestriction of interaction between individuals and optimization of quarantine.
Pemodelan Data Time Series dengan Pendekatan Regresi Nonparametrik B-Spline Rahasia, Zulaiha; Resmawan, Resmawan; Isa, Dewi Rahmawaty
AKSIOMA : Jurnal Matematika dan Pendidikan Matematika Vol 11, No 1 (2020): AKSIOMA: Jurnal Matematika dan Pendidikan Matematika
Publisher : Universitas PGRI Semarang

#### Abstract

Spline is one of the nonparametric approach, to adjust data so the final model has good flexibility. The purpose of this research is to model the time series data in the form of currency exchange rates by using the nonparametric B-spline approach. In B-spline modelling, determination of the order for the model, and the number and the placement of the knot are the criteria that must be considered. The best B-spline model obtained based on the selection of the optimal knot points with minimum Generalized Cross Validation (GCV) criteria. The modelling in this research use data on the exchange rate of the rupiah toward the US dollar in the period January 2014 - December 2018. The best B-spline model obtained by the 2 point knot approach, at points 11935.10 and 12438.29, with GCV valueequals to 55683.09.Keywords: Nonparametric Regression; B-Spline; Generalized Cross Validation
PEMANFAATAN SMARTPHONE DAN LAPTOP PRIBADI MENUJU SMART TEACHER DAN SMART SOCIETY DI DESA MONGGUPO KECAMATAN ATINGGOLA KABUPATEN GORONTALO UTARA Nurwan, Nurwan; Achmad, Novianita; Resmawan, Resmawan
Jurnal Bakti Masyarakat Indonesia Vol 1, No 1 (2018): Jurnal Bakti Masyarakat Indonesia
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat, Universitas Tarumanagara

#### Abstract

Penerapan Metode Double Moving Average Untuk Meramalkan Hasil Produksi Tanaman Padi di Provinsi Gorontalo Yusuf, Hendra Andrianto; Djakaria, Ismail; Resmawan, Resmawan
d'CARTESIAN:Jurnal Matematika dan Aplikasi Vol 9, No 2 (2020): September 2020
Publisher : Universitas Sam Ratulangi

#### Abstract

Artikel ini membahas tentang metode double moving average untuk mengetahui hasil ramalan produksi tanaman padi di Provinsi Gorontalo. Metode double moving average merupakan metode rata-rata bergerak linier yang digunakan untuk mengatasi data deret waktu dengan pola yang cenderung mengalami trend linear. Berdasarkan pola data hasil produksi tanaman padi, menunjukkan bahwa pola data tersebut mengalami peningkatan setiap tahunnya dan dapat diidentifikasi bahwa data berpola trend.Â  Hasil penelitian ini menunjukan bahwa model terbaik untuk meramalkan hasil produksi tanaman padi diperole MA (2 Ã— 2) dengan model persamaan adalah F18+p =331692+(-5373) Ã— mÂ  dan nilai tingkat akurasi yaitu measure absolute persenrage error (MAPE) sebesar 5.3537. Sehingga diperoleh hasil peramalan 5 tahun ke depan yaitu tahun 2019 sebesar 326318.5 Ton, 2020 sebesar 32094.5 Ton, dan seterusnya sampai tahun 2023 sebesar 304826.5 Ton.
Analisis Kontrol Optimal Pada Model Matematika Penyebaran Pengguna Narkoba Dengan Faktor Edukasi Resmawan; M Eka; Nurwan; N Achmad
JURNAL ILMIAH MATEMATIKA DAN TERAPAN Vol. 17 No. 2 (2020)
Publisher : Program Studi Matematika, Universitas Tadulako

#### Abstract

ABSTRACT This paper discusses the mathematical model of drug users with education. Optimal control theory was used on this model with education as a control to achieve the goal of minimizing the number of drug users. The optimal control problem was analyzed using Pontryagin’s minimum principle and performed numerical simulation by using a 4th-order Runge-Kutta method. Based on the numerical simulation, there was a change in the number in each population which caused the population with education to increase, and control with education resulted in the reduced number of drug users. Keywords: Optimal control; mathematical model; drug users; education ABSTRAK Artikel ini membahas tentang model matematika penyebaran pengguna narkoba dengan faktor edukasi. Teori kontrol optimal diterapkan pada model ini dengan pemberian kontrol berupa edukasi dengan tujuan untuk meminimumkan jumlah pengguna narkoba. Kontrol optimal dianalisis menggunakan Prinsip Minimum Pontryagin dan dilakukan simulasi numerik dengan menggunakan metode Runge-Kutta orde 4. Berdasarkan simulasi diperoleh bahwa terjadi perubahan jumlah di tiap populasi dan mengakibatkan jumlah populasi dengan edukasi bertambah, serta pemberian kontrol dengan edukasi mengakibatkan jumlah pengguna narkoba berkurang. Kata kunci : Kontrol optimal; model matematika; pengguna narkoba; edukasi
Metode Spatial Autoregressive dalam Analisis Kerawanan Demam Berdarah Dengue di Kota Gorontalo Mahading, Tria Susilowati; Resmawan, Resmawan; Yahya, Lailany; Akolo, Ingka Rizkiyani
JMPM: Jurnal Matematika dan Pendidikan Matematika Vol 5, No 2 (2020): September 2020 - Februari 2021
Publisher : Universitas Pesantren Tinggi Darul Ulum Jombang

#### Abstract

This study was aimed at discussing spatial regression to find out factors influencing the dengue fever vulnerability in Gorontalo city. The spatial regression method used in this study was the Spatial Autoregressive Model (SAR). The SAR model can provide additional information about the effect of the location of the village/village on the incidence of DBD in Gorontalo City. This study concluded that the number of population, number of poor population, educational facilities and the area elevation were factors influencing the dengue fever vulnerability in the city of Gorontalo.
ANALISIS DINAMIKA MODEL EPIDEMI SEIQR-SI PENYEBARAN WORM BEBASIS WI-FI PADA SMARTPHONE Mohamad, Regina; Yahya, Lailany; Resmawan, Resmawan; Nuha, Agusyarif Rezka
TRANSFORMASI Vol 5 No 1 (2021): TRANSFORMASI : Jurnal Pendidikan Matematika dan Matematika
Publisher : Pendidikan Matematika FMIPA Universitas PGRI Banyuwangi

#### Abstract

Artikel ini membahas model matematika SEIQR-SI penyebaran worm berbasis Wi-Fi pada smartphone. Worm berbasis Wi-Fi termasuk perangkat lunak yang mampu mereplikasi dirinya untuk mencoba memecahkan kata sandi setiap router Wi-Fi baru yang ditemuinya tanpa bantuan manusia. Analisis model dilakukan dengan menentukan titik kesetimbangan beserta kestabilannya. Hasil analisis menunjukkan bahwa model SEIQR-SI memiliki dua titik kesetimbangan yaitu titik kesetimbangan bebas worm dan titik kesetimbangan endemik. Titik setimbang bebas worm stabil asimtotik lokal jika , sedangkan titik setimbang endemik stabil asimtotik lokal jika . Pada bagian akhir diberikan simulasi secara numerik yang menunjukkan peningkatan laju karantina oleh Wi-Fi base station pada worm dapat menekan jumlah node smartphone dan Wi-Fi yang terinfeksi worm.
Analysis of The Rosenzweig-MacArthur Predator-Prey Model with Anti-Predator Behavior Djakaria, Ismail; Gaib, Muhammad Bachtiar; Resmawan, Resmawan
CAUCHY Vol 6, No 4 (2021): CAUCHY: Jurnal Matematika Murni dan Aplikasi
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

#### Abstract

This paper discusses the analysis of the Rosenzweig-MacArthur predator-prey model with anti-predator behavior. The analysis is started by determining the equilibrium points, existence, and conditions of the stability. Identifying the type of Hopf bifurcation by using the divergence criterion. It has shown that the model has three equilibrium points, i.e., the extinction of population equilibrium point (E0), the non-predatory equilibrium point (E1), and the co-existence equilibrium point (E2). The existence and stability of each equilibrium point can be shown by satisfying several conditions of parameters. The divergence criterion indicates the existence of the supercritical Hopf-bifurcation around the equilibrium point E2. Finally, our model's dynamics population is confirmed by our numerical simulations by using the 4th-order Runge-Kutta methods.
Goodwin Model with Clustering Workers' Skills in Indonesian Economic Cycle Mahmud, Sri Lestari; Resmawan, Resmawan; Ismail, Sumarno; Nurwan, Nurwan; Taki, Febriani
CAUCHY Vol 7, No 2 (2022): CAUCHY: Jurnal Matematika Murni dan Aplikasi (May 2022) (Issue in Progress)
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

#### Abstract

The economic model which deals with the economic cycle is Goodwin's Model. It presents the relationship between the employment rate and wage shares. In this study, the modification model was made, taking into three types of workers, namely high, medium, and low-skilled workers. Studies of the model are conducted by determining the equilibrium point and its stability analysis. Furthermore, a numerical simulation is given to see which model satisfies the ideal of Goodwinâ€˜s model cycle prediction by using Indonesian data from 2000 to 2020. In the end, an investigation into the effects of reducing the wage gap between the three types of workers was conducted. The results showed two equilibrium points, namely The Equilibrium Point without Employment Rate and The Wages Share (T1) and the Existence Equilibrium Point of Employment Rate and Wages Share (T2). T1 achieves a stable node condition when ScQd+pi+et while T2 reaches a stable center condition when ScQd+pi+et. The simulation showed Goodwin's model of high- and low-skilled workers produced the ideal of Goodwin model cycle predictions, whereas Goodwin's model of medium-skilled workers and the entire economy (capitalist) didnâ€™t produce the ideal of Goodwin model cycle predictions. Eventually, the effects of reducing the wage gap make the economy unstable.
MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI Saltina, Saltina; Achmad, Novianita; Resmawan, Resmawan; Nuha, Agusyarif Rezka
Majalah Ilmiah Matematika dan Statistika Vol 22 No 1 (2022): Majalah Ilmiah Matematika dan Statistika
Publisher : Jurusan Matematika FMIPA Universitas Jember

#### Abstract

The present work discusses a mathematical model of diphtheria transmission. Diphtheria is an infection of the throat and upper respiratory tract that is caused by bacteria called corynebacterium. The model was developed by adding latent population and death parameter resulted from this infection. The purpose of this study was to construct a mathematical model, analyze the stability of the equilibrium point, and interpret the simulation of the SEIQR mathematical model in the trasnsmission of diphteria. From the constructed model, there were bacis reproduction number () and two equilibrium points, namely disease-free and endemic equilibrium point would be stable if and , respectively. Moreover, a nunerical simulation was carried out to determine the dynamics of the diphteria transmission. The simulation results showed that if the rates of vaccinated propotion and individual are increased, the infaction woud grandually go away from the population. In short, diphteria transmission be prevented by increasing the rate of vaccnation.Keywords: Basic reproduction number, Diphtheria, Equilibrium point, Mathematical model, Numerical simulationMSC2020: 37A99, 37A10, 37C10