Pradana, Yano Surya
Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Renewable Energy Development

Effect of Devices and Driving Pressures on Energy Requirements and Mass Transfer Coefficient on Microalgae Lipid Extraction Assisted by Hydrodynamic Cavitation Setyawan, Martomo; Mulyono, Panut; Sutijan, Sutijan; Pradana, Yano Surya; Prasakti, Laras; Budiman, Arief
International Journal of Renewable Energy Development Vol 9, No 3 (2020): October 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2020.26773

Abstract

Previous studies of biodiesel production from microalgae have concluded that microalgal biodiesel is not profitable at an industrial scale due to its excessive energy consumption for lipid extraction. Hydrodynamic cavitation lipid extraction is one of the extraction methods which has lower energy consumption. Thismethod enables a fast extraction rate and low energy consumption for cell disruption. In order to achieve optimum process conditions, several influential parameters, which are cavitation generator geometry and driving pressure, need to be scrutinized. The experimental result showed that the maximum yield was obtained at 5 bar driving pressure. The lowest specific extraction energy was obtained at 4.167 bar driving pressure while using one side concave cavitation generator geometry with the ratio of the reduced cross-sectional area of 0.39. The value of the energy extraction requirement 17.79 kJoule/g lipids is less than the biodiesel heating value, and the value of the volumetric mass transfer coefficient is almost 20 times fold greater than the conventional extraction method, therefore this method is promising to be further developed.