SABARUDDIN, .
Departement Of Soil Science, Faculty Of Agriculture, University Of Sriwijaya, Inderalaya, South Sumatra

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Bioremediation of petroleum sludge was conducted by using land-farming method in micro scale and by applying an indigenous bacteria Bacillus megaterium. The samples were from PT. Pertamina Musi Banyuasin district of South Sumatra. The research aim was to evaluate the performance of the bacteria in degrading petroleum sludge. The rate of the biodegradation process was determined by using differential method and the data analyses show that the reaction order is 0.74. Then, the rate of biodegradati BAMBANG YUDONO; MUHAMMAD SAID; . SABARUDDIN; ADIPATI NAPOLEON; MARYATI BUDI UTAMI
HAYATI Journal of Biosciences Vol. 17 No. 4 (2010): December 2010
Publisher : Bogor Agricultural University, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.4308/hjb.17.4.155

Abstract

Bioremediation of petroleum sludge was conducted by using land-farming method in micro scale and by applying an indigenous bacteria Bacillus megaterium. The samples were from PT. Pertamina Musi Banyuasin district of South Sumatra. The research aim was to evaluate the performance of the bacteria in degrading petroleum sludge. The rate of the biodegradation process was determined by using differential method and the data analyses show that the reaction order is 0.74. Then, the rate of biodegradation constant was determined by using an integral method assuming that the biodegradation process was a first reaction order. From the calculation, it was revealed that the biodegradation reaction constant was 0.0204/day. The bioremediation-kinetics model is y = -0.0204X + 2.0365, and by using this model the bioremediation process could be ended after 99.83 days. The qualitative analysis was carried out by using GC-MS to investigate the components of compounds changed during the bioremediation process. The results show that the B. megaterium could degrade 99.32% of alkane compounds.
Dynamical Link of Peat Fires in South Sumatra and the Climate Modes in the Indo-Pacific Region Raden Putra; Deni Okta Lestari; Edy Sutriyono; Sabaruddin Sabaruddin; Iskhaq Iskandar
Indonesian Journal of Geography Vol 51, No 1 (2019): Indonesian Journal of Geography
Publisher : Faculty of Geography, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (6736.806 KB) | DOI: 10.22146/ijg.35667

Abstract

Peat fire is one of the environmental disasters occurring widespread during the dry season in South Sumatra. The region has long been recognized to have extensive peatland, hence it is considered as the vulnerable areas to fire. This study employs spatial analysis to evaluate the likely linked factors causing peat fire in the study area. Two interannual climate modes such as the El Niño – Southern Oscillation and Indian Ocean Dipole were considered to have affected the area with respect to climate anomaly at the 1995-2016 periods. This phenomenon was followed by the peat fire in many areas. There appears a close linkage between the occurrence of peat fires and climate anomaly. A number of hotspots tend to occur annually during the drought season. A significant number of hotspots took place during the 2006 pIOD and 2015 El Niño events due to a significant decrease in rainfall intensities.
Effect of Organic Matter Amendment on Lead Contamination in Roadside Soil and Plant Sabaruddin Sabaruddin; Dedik Budianta; Mardia Mardia
JOURNAL OF TROPICAL SOILS Vol 15, No 1: January 2010
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2010.v15i1.25-32

Abstract

Lad Contamination in Roadside Soil and Plant and Effect of Organic Matter Amendment (Sabaruddin, D Budianta and Mardia):  Roadside soils and plants may be the most important sink of lead (Pb).  It has been widely known that soil organic matter (SOM) plays important roles in determining concentrations of metals in soil solution and their extractability from the soil.  To investigate Pb contamination in the roadside soils and plants, as well as the effect of organic matter (OM) on the soluble Pb in the roadside soils, surface soils (0 to 20 cm) were collected from a busy road.   The soils were incubated for 4 weeks under room temperature after being treated with 0, 30, 60 and 90 Mg ha-1 of OM.  Leaves of oil palms (Elaeis guineensis) planted on the roadside were also analyzed for Pb content.  Current study revealed that Pb content in roadside soils and leaves of oil palm was 1.5 and 5.5 times higher than the safe level of Pb in soil and plant.  It confirms that both soil and plant at the study site were contaminated by Pb.  Current study also showed that SOM amendment significantly (P<0.01) affected soluble Pb content in the soils.  Adding OM to the soil at 30 Mg ha-1 to correct the level of SOC from very low to low was sufficient to significantly reduce soluble Pb in the soils.  However, the application of 60 Mg ha-1 of OM triggered the increases in soluble Pb in the soils.  Further increases in OM application to 90 Mg ha-1 resulted in significant increases in soluble Pb as compared with that in the soil receiving 30 Mg ha-1 of OM.  In spite of the increases, the level of soluble Pb in the soils receiving 60 and 90 Mg ha-1 of OM was still much below the safe level of Pb in soil.
Optimum Population Size of Indigenous P-solubilizing Bacteria to Correct P Availability in Acid Soils . Sabaruddin; . Marsi; . Desti
JOURNAL OF TROPICAL SOILS Vol 16, No 1: January 2011
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2011.v16i1.55-62

Abstract

Indonesian acid soils were used to determine an optimum population size of indigenous P-solubilizing bacteria (PSB) for solubilizating fixed P. The experiment consisted of two sub-experiments. Sub-experiment I was to isolate the indigenous PSB from Ultisols, Fresh-water lowland Inceptisols, and tidal-swamp Inceptisols. Subexpriment II was to study the capacity of the isolated PSB to correct P availability in acid soils by inoculating the isolated PSB into the tested soils at 0, 105, 1010, and 1015 cells. The population of the indigenous PSB in the tested soils increased as a result of the inoculation. Both Al-P and Fe-P content in the three tested soils decreased as compared with the initial content. The increases of available P were significantly correlated with the decreases both in Al-P (r2 = 0.68 for the Ultisols; r2 = 0.51 for the fresh-water Inceptisols; and r2 = 0.35 for the tidal-swamp Inceptisols) and in Fe-P (r2 = 0.91 for the Ultisols; r2 = 0.45 for the fresh-water lowland Inceptisols; and r2 = 0.78 for the tidal-swamp Inceptisols). The increases of available P were significantly correlated with the increases of thepopulation of the PSB (r2 = 0.60 for the Ultisols; r2 = 0.55 for the fresh-water lowland Inceptisols; and r2 = 0.69 for the tidal-swamp Inceptisols). The available P in the three tested soils sharply increased if the population size of the PSB was about 1 × 109 cfu g-1 of soil.Keywords: Al-P, Fe-P, fresh-water lowland, isolated, Pikovskaya medium, tidal swamp
Phosphate Adsorption Capacity and Organic Matter Effect on Dynamics of P Availability in Upland Ultisol and Lowland Inceptisol . Marsi; . Sabaruddin
JOURNAL OF TROPICAL SOILS Vol 16, No 2: May 2011
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2011.v16i2.107-114

Abstract

Ultisols and Inceptisols were used to investigate the adsorption-desorption capacity of P and the effect of organic matter on the dynamics of P availability in tropical acid soils. The experiment consisted of two sub-experiments. Sub-experiment I was to study the adsorption-desorption capacity of Ultisols, Fresh-water lowland Inceptisols, and tidal-swamp Inceptisols. Therefore, surface soils (0 to 30 cm) of each tested soil were treated with 0, 10, 20, 30, 40, 60, 80, 100, 120, 140, 170, and 200 mg P kg-1 of soil. Sub-experiment II was to study the effects of organic matterapplication (0, 5, 10, and 15 Mg ha-1) on the dynamics of available P following 60d incubation under room temperature.P fertilizer application significantly affected water soluble-P (WSP) (p<0.01) and soil available P-Bray and Kurtz No. 1 (BKP) (p<0.01) in the three tested soils. The different response of both WSP and BKP confirmed that the soils tested in the current experiment had different soil P buffering capacity in the order of Tidal-lowlandInceptisol>Upland Ultisol>fresh-water Lowland Inceptisol. OM application increased the BKP in all tested soils as compared to the control. Differences in pattern of soil available P dynamics over time were detected between upland soil and two lowland soils used in the current experiment.Keywords: Adsorption-desorption, Inceptisols, organic matter, Ultisols
Respective Influences of Indian Ocean Dipole and El Niño-Southern Oscillation on Indonesian Precipitation Deni Okta Lestari; Edy Sutriyono; Sabaruddin Sabaruddin; Iskhaq Iskandar
Journal of Mathematical and Fundamental Sciences Vol. 50 No. 3 (2018)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.math.fund.sci.2018.50.3.3

Abstract

The respective influences of the Indian Ocean Dipole (IOD) and El Niño-Southern Oscillation (ENSO) on Indonesian precipitation were evaluated using monthly precipitation data from the Global Precipitation Climatology Centre (GPCC) for January 1948 to December 2013. Simultaneous correlation between seasonal precipitation anomalies and climate indices for these two types of climate modes revealed that IOD events have a significant correlation with the precipitation over southern Sumatra, Java, southern Kalimantan, the Nusa Tenggara Islands, some parts of Sulawesi and eastern Papua. Meanwhile, ENSO events have a significant correlation with the precipitation over southern Sumatra, Java, Kalimantan, Sulawesi, and Papua. Droughts during the dry season (JJA and SON) typically occur when a positive IOD event simultaneously occurs with an El Niño event associated with anomalous low SST observed in the Indonesian seas and the southeastern equatorial Indian Ocean. Low SST anomalies lead to low-level wind divergence and reduce water vapor in the lower atmosphere, supress atmospheric convection over the Indonesian region and then cause a decrease in precipitation.