Bulletin of Chemical Reaction Engineering & Catalysis
2020: BCREC Volume 15 Issue 3 Year 2020 (December 2020)

Effect of FSP-inserted Cu on Physicochemical Properties of Cu/Al2O3 Catalyst

Charuwan Poosri (Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000)
Choowong Chaisuk (Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000)
Wantana Klysubun (Synchrotron Light Research Institute, 111 University Ave., Muang, Nakhon Ratchasima 30000)



Article Info

Publish Date
28 Dec 2020

Abstract

The copper inserted on Cu/Al2O3 catalysts with various Cu loading (10-40 wt%) were synthesized via flame spray pyrolysis (FSP). These catalysts were characterized using X-ray diffraction (XRD), N2 physisorption, temperature programmed reduction (TPR) and X-ray absorption near edge spectroscopy (XANES). The XRD results confirmed the formation of copper aluminate spinel (CuAl2O4) on the FSP-inserted Cu catalyst. The CuO crystallite size of the Cu/Al2O3 catalysts was increased with increasing Cu loading during the flame spray pyrolysis step. The incorporation of copper and aluminum precursors during the flame spray pyrolysis step can inhibit the growth of Al2O3 particles resulting in higher BET surface area and smaller particle size than pure Al2O3 support. The data from TPR and XANES results can predict the ratio of CuO and CuAl2O4 in the FSP-made support. Less than 20 wt% loading of the FSP-inserted Cu showed high concentration of CuAl2O4 phase in the FSP-made material. The composition of CuO and CuAl2O4 phase can be controlled by varying Cu loading in flame spray pyrolysis step. This is a promising alternative way to synthesize the desired catalyst. An example was the catalytic testing of the selective hydrogenolysis of glycerol. The presence of both CuO and CuAl2O4 phases in the Cu/Al2O3 catalyst enhanced the catalytic activity and promoted the selectivity to acetol product. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Copyrights © 2020






Journal Info

Abbrev

bcrec

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Chemistry

Description

Bulletin of Chemical Reaction Engineering & Catalysis (e-ISSN: 1978-2993), an international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics studies, and chemical reaction ...