Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Vol 5 No 4 (2021): Agustus 2021

Penerapan Convolutional Neural Network pada Citra Rontgen Paru-Paru untuk Deteksi SARS-CoV-2

Bambang Pilu Hartato (Fakultas Ilmu Komputer - Universitas Amikom Purwokerto)

Article Info

Publish Date
24 Aug 2021


COVID-19 was officially declared as a pandemic by the WHO on March 11, 2020. For COVID-19, the testing methods commonly used are the Antibody Testing and RT-PCR Testing. Both methods are considered to be the most effective in determining whether a person has been suffered from COVID-19 or not. However, alternative testing methods need to be tried. One of them is using the Convolutional Neural Network. This study aims to measure the performance of CNN in classifying x-ray image of a person’s chest to determine whether the person is suffered from COVID-19 or not. The CNN model that was built consists of 1 convolutional 2D layer, 2 activation layers, 1 maxpooling layer, 1 dropout layer, 1 flatten layer, and 1 dense layer. Meanwhile, the chest x-ray image dataset used is the COVID-19 Radiography Database. This dataset consists of 3 classes, i.e. COVID-19 class, NORMAL class, and VIRAL_PNEUMONIA. The experiments consisted of 4 scenarios and were carried out using Google Colab. Based on the experiments, the CNN model can achieve an accuracy of 98.69%, a sensitivity of 97.71%, and a specificity of 98.90%. Thus, CNN has a very good performance to classify the disease based on a person’s chest x-ray.

Copyrights © 2021

Journal Info





Computer Science & IT Engineering


Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) dimaksudkan sebagai media kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai penelitian Rekayasa Sistem, Teknik Informatika/Teknologi Informasi, Manajemen Informatika dan Sistem Informasi. Sebagai bagian dari semangat ...