Bulletin of Electrical Engineering and Informatics
Vol 11, No 2: April 2022

Secure lightweight obfuscated delay-based physical unclonable function design on FPGA

Mohammad Haziq Ishak (Universiti Teknikal Malaysia Melaka)
Mohd Syafiq Mispan (Universiti Teknikal Malaysia Melaka)
Wong Yan Chiew (Universiti Teknikal Malaysia Melaka)
Muhammad Raihaan Kamaruddin (Universiti Teknikal Malaysia Melaka)
Mikhail Aleksandrovich Korobkov (Siemens Digital Industries Software (EDA))



Article Info

Publish Date
01 Apr 2022

Abstract

The internet of things (IoT) describes the network of physical objects equipped with sensors and other technologies to exchange data with other devices over the Internet. Due to its inherent flexibility, field-programmable gate array (FPGA) has become a viable platform for IoT development. However, various security threats such as FPGA bitstream cloning and intellectual property (IP) piracy have become a major concern for this device. Physical unclonable function (PUF) is a promising hardware fingerprinting technology to solve the above problems. Several PUFs have been proposed, including the implementation of reconfigurable-XOR PUF (R-XOR PUF) and multi-PUF (MPUF) on the FPGA. However, these proposed PUFs have drawbacks, such as high delay imbalances caused by routing constraints. Therefore, in this study, we explore relative placement method to implement the symmetric routing in the obfuscated delay-based PUF on the FPGA board. The delay analysis result proves that our method to implement the symmetric routing was successful. Therefore, our work has achieved good PUF quality with uniqueness of 48.75%, reliability of 99.99%, and uniformity of 52.5%. Moreover, by using the obfuscation method, which is an Arbiter-PUF combined with a random challenge permutation technique, we reduced the vulnerability of Arbiter-PUF against machine learning attacks to 44.50%.

Copyrights © 2022






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...